Examples of algebraic equations

1. Solve the equation

$$
z^{2}-4 z+5=0
$$

We calculate $\Delta=-4$, so $\sqrt{\Delta}=\sqrt{4 i^{2}}= \pm 2 i$, and $z_{1}=\frac{4+2 i}{2}=2+i, z_{2}=\frac{4-2 i}{2}=2-i$.
Because this was an equation with real coefficients and $\Delta<0$, its roots are conjugate numbers.
2. Solve the equation

$$
z^{2}+(-1+i) z+(2+i)=0
$$

Like above: $\Delta=-8-6 i$. To calculate $\sqrt{\Delta}$ we use the formulas

$$
\sqrt{a+b i}= \begin{cases} \pm \sqrt{a} & \text { for } \quad b=0, a \geqslant 0 \\ \pm \sqrt{-a} i & \text { for } \quad b=0, a<0 \\ \pm\left(\sqrt{\frac{a+|z|}{2}}+i \operatorname{sgn} b \sqrt{\frac{-a+|z|}{2}}\right) & \text { for } \quad b \neq 0 .\end{cases}
$$

so $\sqrt{\Delta}= \pm(1-3 i)$. Finally

$$
z_{1}=\frac{1-i+1-3 i}{2}=1-2 i, \quad z_{2}=\frac{1-i-1-3 i}{2}=i .
$$

Now the roots are not conjugate numbers.
2. Solve the equation

$$
z^{3}-4 z^{2}+14 z-20=0
$$

This is an equation with integer coefficients. First we look for roots among divisors of 20. We find (good way is to apply Horner's scheme) $z_{1}=2$ and we can factorize

$$
z^{3}-4 z^{2}+14 z-20=(z-2)\left(z^{2}-2 z+10\right) .
$$

Now we solve $z^{2}-2 z+10=0$ using usual method.
3. Solve the equation

$$
z^{4}-2 z^{2}+4=0
$$

Let $t=z^{2}$. Then

$$
t^{2}-2 t+4=0
$$

Using usual method we get

$$
t_{1}=1+\sqrt{3} i, \quad t_{2}=1-\sqrt{3} i .
$$

For each of these numbers we have to find its square roots (best way is to use formulas above). The final answer is

$$
z_{1}=\frac{1}{\sqrt{2}}(\sqrt{3}+i), z_{2}=-\frac{1}{\sqrt{2}}(\sqrt{3}+i), z_{3}=\frac{1}{\sqrt{2}}(\sqrt{3}-i), z_{4}=\frac{1}{\sqrt{2}}(-\sqrt{3}+i) .
$$

4. Solve the equation. Then plot its roots on the complex plane.

$$
z^{3}-(1+i)^{3}=0,
$$

Method 1.

We use the formula $a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$, which gives:

$$
(z-1-i)\left(z^{2}+(1+i) z+(1+i)^{2}\right)=(z-1-i)\left(z^{2}+(1+i) z+2 i\right)
$$

Hence $z_{1}=1+i$ or $z^{2}+(1+i) z+2 i=0$.
To solve the last equation we calculate $\Delta=-6 i$. To calculate $\sqrt{\Delta}$ we use the the above formulas and find $\sqrt{\Delta}=\sqrt{3}-i \sqrt{3}$.
Finally $z_{2}=\frac{-1-\sqrt{3}}{2}+i \frac{-1+\sqrt{3}}{2}, z_{3}=\frac{-1+\sqrt{3}}{2}-i \frac{1+\sqrt{3}}{2}$.
These points are vertices of equilateral triangle inscribed into the circle of radius $\sqrt{2}$. It is easy to plot the vertex z_{1} and then the other vertices.

Method 2.

Dividing the original equation by $(1+i)^{3}$ we obtain:

$$
\left(\frac{z}{1+i}\right)^{3}=1
$$

Substituting w for $\frac{z}{1+i}$ we get the equation

$$
w^{3}=1
$$

Using the polar form of 1 , it is easy to find its cube roots, which are

$$
w_{1}=1, \quad w_{2}=-\frac{1}{2}+i \frac{\sqrt{3}}{2}, \quad w_{3}=-\frac{1}{2}-i \frac{\sqrt{3}}{2}
$$

But $z=(1+i) w$, so now we multiply these numbers by $1+i$ to get the answer.

