Examples of algebraic equations

1. Solve the equation

$$z^2 - 4z + 5 = 0.$$

We calculate $\Delta = -4$, so $\sqrt{\Delta} = \sqrt{4i^2} = \pm 2i$, and $z_1 = \frac{4+2i}{2} = 2+i$, $z_2 = \frac{4-2i}{2} = 2-i$. Because this was an equation with real coefficients and $\Delta < 0$, its roots are conjugate numbers.

2. Solve the equation

$$z^{2} + (-1+i)z + (2+i) = 0.$$

Like above: $\Delta = -8 - 6i$. To calculate $\sqrt{\Delta}$ we use the formulas

$$\sqrt{a+bi} = \begin{cases} \pm \sqrt{a} & \text{for } b = 0, a \ge 0, \\ \pm \sqrt{-ai} & \text{for } b = 0, a < 0, \\ \pm \left(\sqrt{\frac{a+|z|}{2}} + i\text{sgn} b\sqrt{\frac{-a+|z|}{2}}\right) & \text{for } b \ne 0. \end{cases}$$

so $\sqrt{\Delta} = \pm (1 - 3i)$. Finally

$$z_1 = \frac{1-i+1-3i}{2} = 1-2i, \qquad z_2 = \frac{1-i-1-3i}{2} = i.$$

Now the roots are not conjugate numbers.

2. Solve the equation

$$z^3 - 4z^2 + 14z - 20 = 0.$$

This is an equation with integer coefficients. First we look for roots among divisors of 20. We find (good way is to apply Horner's scheme) $z_1 = 2$ and we can factorize

$$z^{3} - 4z^{2} + 14z - 20 = (z - 2)(z^{2} - 2z + 10).$$

Now we solve $z^2 - 2z + 10 = 0$ using usual method.

3. Solve the equation

Let $t = z^2$. Then

$$t^2 - 2t + 4 = 0.$$

 $z^4 - 2z^2 + 4 = 0$

Using usual method we get

$$t_1 = 1 + \sqrt{3}i, \quad t_2 = 1 - \sqrt{3}i.$$

For each of these numbers we have to find its square roots (best way is to use formulas above). The final answer is

$$z_1 = \frac{1}{\sqrt{2}}(\sqrt{3}+i), \ z_2 = -\frac{1}{\sqrt{2}}(\sqrt{3}+i), \ z_3 = \frac{1}{\sqrt{2}}(\sqrt{3}-i), \ z_4 = \frac{1}{\sqrt{2}}(-\sqrt{3}+i).$$

4. Solve the equation. Then plot its roots on the complex plane.

$$z^3 - (1+i)^3 = 0,$$

Method 1.

We use the formula $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$, which gives:

$$(z-1-i)(z^{2}+(1+i)z+(1+i)^{2}) = (z-1-i)(z^{2}+(1+i)z+2i)$$

Hence $z_1 = 1 + i$ or $z^2 + (1 + i)z + 2i = 0$. To solve the last equation we calculate $\Delta = -6i$. To calculate $\sqrt{\Delta}$ we use the the above formulas and find $\sqrt{\Delta} = \sqrt{3} - i\sqrt{3}$. Finally $z_2 = \frac{-1 - \sqrt{3}}{2} + i \frac{-1 + \sqrt{3}}{2}$, $z_3 = \frac{-1 + \sqrt{3}}{2} - i \frac{1 + \sqrt{3}}{2}$.

These points are vertices of equilateral triangle inscribed into the circle of radius $\sqrt{2}$. It is easy to plot the vertex z_1 and then the other vertices. Method 2.

Dividing the original equation by $(1+i)^3$ we obtain:

$$\left(\frac{z}{1+i}\right)^3 = 1.$$

Substituting w for $\frac{z}{1+i}$ we get the equation

$$w^3 = 1.$$

Using the polar form of 1, it is easy to find its cube roots, which are

$$w_1 = 1$$
, $w_2 = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$, $w_3 = -\frac{1}{2} - i\frac{\sqrt{3}}{2}$

But z = (1+i)w, so now we multiply these numbers by 1+i to get the answer.