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Preface

These are lecture notes for a first course in calculus. The development of

calculus in the seventeenth and eighteenth centuries was motivated by the

need to understand physical phenomena such as the tides, the phases of the

moon, the nature of light, and gravity.

Now, Calculus is one of the core topics studied at university level by stu-

dents on many different types of degree programme. Alongside Linear Algebra,

it provides the framework for mathematical modelling in many diverse areas.

This text sets out to introduce and explain Calculus to students from electron-

ics and telecommunication. It covers all the material that would be expected

to be in most first-year university courses in the subject, together with some

more advanced material that would normally be taught later.

Descriptions of the topics to be covered appear in the relevant chapters.

However, it is useful to give a brief overview at this stage. We start by intro-

ducing the limit of a function of one variable and, in particular, how this can

be used to define what it means to say that a function is continuous. We then

introduce the Riemann integral and explain its relationship to differentiation

via the Fundamental Theorem of Calculus. This leads on to a discussion of

improper integrals and, in particular, some tests that we can use to determine

whether such integrals are convergent or divergent.

More detailed map of dependences is presented in the Figure below.

Graphing calculators and computers are playing an increasing role in the

mathematics classroom. Without a doubt, graphing technology can enhance

the understanding of calculus, so some instances where many of the graphs of

surfaces were produced usingMathematica, Matlab, GeoGebra, Graph software

and P. Seeburger’s Dynamic Calculus Site (http://web.monroecc.edu/Dynamic

Calculus/).

This text represents our best effort at distilling from my experience what it

is that we think works best in helping students not only to do Calculus, but

to understand it. We regard understanding as essential.

We have attempted to write a user-friendly, fairly interactive and helpful

text, and we intend that it could be useful not only as a course text, but for

self-study. These notes are quite informal, but they have been carefully read

and criticized by the students, and their comments and suggestions have been
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incorporated. Although we’ve tried to be careful, there are undoubtedly some

errors remaining. If you find any, please let us know.

Carefully designed exercises are provided in the supplementary volume of

"Calculus , Problems , Solutions and Hints".

Andrzej Máckiewicz

Poznán, September 2014

Map of the course. (Source: Oliver Knill)



1

Spotlight on calculus

Calculus is the mathematics that helps us deal with calculating information

about changing quantities. It was developed to deal with such problems as

finding the total distance travelled by an object with changing velocity, or

finding the velocity of an object with changing position. Historically, calculus,

with its origins in the 17th century, came first, and made rapid progress on

the basis of informal intuition.

Sir Isaac Newton

Not until well through the 19th century was it possible to claim that the

edifice was constructed on sound logical foundations. As for practicality, every

university teacher knows that students are not ready for even a semi-rigorous

course on analysis until they have acquired the intuitions and the sheer tech-

nical skills that come from a traditional calculus course. Therefore, for novice

students, we present here calculus using more or less traditional approach.

The goal of this course is for you to understand and appreciate the beautiful

subject of calculus.



12 1. Spotlight on calculus

Gottfried Wilhelm von Leibniz

There are two main branches of calculus. The first is differentiation (or deriv-

atives), which helps us to find a rate of change of one quantity compared to

another. The second is integration, which is the reverse of differentiation. We

may be given a rate of change and we need to work backwards to find the

original relationship (or equation) between the two quantities.

Rene Descartes
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1.1 The two basic concepts of calculus

The remarkable progress that has been made in science and technology during

the last Centuries is due in large part to the development of mathematics.

That branch of mathematics known as integral and differential calculus serves

as a natural and powerful tool for attacking a variety of problems that arise in

physics, astronomy, engineering, chemistry, geology, biology, and other fields

including, rather recently, some of the social sciences. Calculus is concerned

with comparing quantities which vary in a non-linear way. It is used extensively

in science and engineering since many of the things we are studying (like

velocity, acceleration, current in a circuit) do not behave in a simple, linear

fashion. If quantities are continually changing, we need calculus to study what

is going on.

Calculus is more than a technical tool-it is a collection of fascinating and

exciting ideas that have interested thinking men for centuries. These ideas

have to do with speed, area, volume, rate of growth, continuity, tangent line,

and other concepts from a variety of fields. Calculus forces us to stop and think

carefully about the meanings of these concepts. Another remarkable feature of

the subject is its unifying power. Most of these ideas can be formulated so that

they revolve around two rather specialized problems of a geometric nature. We

turn now to a brief description of these problems.

Consider a curve  which lies above a horizontal base line such as that

shown in Figure 1.1. We assume this curve has the property that every ver-

tical line intersects it once at most. The shaded portion of the figure consists

of those points which lie below the curve , above the horizontal base, and

between two parallel vertical segments joining  to the base. The first funda-

mental problem of calculus is this : To assign a number which measures the

area of this shaded region.Consider next a line drawn tangent to the curve,

as shown in Figure 1.1. The second fundamental problem may be stated as

follows: To assign a number which measures the steepness of this line. Basi-

cally, calculus has to do with the precise formulation and solution of these two

special problems. It enables us to define the concepts of area and tangent line

and to calculate the area of a given region or the steepness of a given tangent

line. Integral calculus deals with the problem of area and will be discussed in

Chapter (xxx) . Differential calculus deals with the problem of tangents and

will be introduced in Chapter (XXX). The birth of integral calculus occurred

more than 2000 years ago when the Greeks attempted to determine areas by

a process which they called the method ofexhaustion. The essential ideas of

this method are very simple and can be described briefly as follows: Given a

region whose area is to be determined, we inscribe in it a polygonal region
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Fig. 1.1. Two specyfic problems: area of shaded region and the tangent line.

Fig. 1.2. Archimedes used the perimeters of inscribed polygons to approximate the

circumference of the circle. For  = 96 the approximation method gives  ≈ 314103
as the circumference of the unit circle.
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Fig. 1.3. Archimedes used the method of exhaustion to derive formulas for the areas

of ellipses, parabolic segments, and sectors of a spiral. He is considered to have been

the greatest applied mathematician of antiquity.

which approximates the given region and whose area we can easily compute.

Then we choose another polygonal region which gives a better approximation,

and we continue the process, taking polygons with more and more sides in an

attempt to exhaust the given region. The method is illustrated for a circular

region in Figure 1.2. It was used successfully by Archimedes (287− 212 BC—
see Figure 1.3) to find exact formulas for the area of a circle and a few other

special figures.The development of the method of exhaustion beyond the point

to which Archimedes carried it had to wait nearly eighteen centuries until the

use of algebraic symbols and techniques became a standard part of mathe-

matics. The elementary algebra that is familiar to most high-school students

today was completely unknown in Archimedes’ time, and it would have been

next to impossible to extend his method to any general class of regions without

some convenient way of expressing rather lengthy calculations in a compact

and simplified form.

A slow but revolutionary change in the development of mathematical no-

tations began in the 16th Century A.D. The cumbersome system of Roman

numerals was gradually displaced by the Hindu-Arabie characters used today,

the symbols + and − were introduced for the first time, and the advantages of
the decimal notation began to be recognized. During this same period, the bril-

liant successes of the Italian mathematicians Tartaglia, Cardano, and Ferrari

in finding algebraic solutions of cubic and quartic equations stimulated a great

deal of activity in mathematics and encouraged the growth and acceptance of
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a new and superior algebraic language. With the widespread introduction of

well-chosen algebraic symbols, interest was revived in the ancient method of

exhaustion and a large number of fragmentary results were discovered in the

16th Century by such pioneers as Cavalieri, Toricelli, Roberval, Fermat, Pas-

cal, and Wallis.

Gradually the method of exhaustion was transformed into the subject now

called integral calculus, a new and powerful discipline with a large variety

of applications, not only to geometrical problems concerned with areas and

volumes but also to problems in other sciences. This branch of mathematics,

which retained some of the original features of the method of exhaustion,

received its biggest impetus in the 17th Century after the development of an

accurate clock. For scientists, it was very important to be able to predict the

positions of the stars, to help in maritime navigation. The greatest challenge

was to determine longitude when a ship was at sea. Whichever nation could

send ships to the New World and successfully bring them back laden with

goods, would become a rich country.

This led to significant developments in science and mathematics, and amongst

the greatest of these was the calculus, largely due to the efforts of Isaac New-

ton (1642 − 1727) and Gottfried Leibniz (1646 − 1716). Newton and Leibniz
built on the algebraic and geometric work of Rene Descartes, who developed

the Cartesian co-ordinate system. There was a bitter dispute between the men

over who developed calculus first. Because of this independent development,

we have an unfortunate mix of notation and vocabulary that is used in calcu-

lus. From Leibniz we get the 

and

R
signs.

Calculus development continued well into the 19th Century before the sub-

ject was put on a firm mathematical basis by such men as Augustin-Louis

Cauchy (1789 − 1857) and Bernhard Riemann (1826 − 1866). Further refine-
ments and extensions of the theory are still being carried out in contemporary

mathematics.

1.2 The method of exhaustion for the area of parabolic
segment

Before we proceed to a systematic treatment of integral calculus, it will be

instructive to apply the method of exhaustion directly to one of the special

figures treated by Archimedes himself. The region in question is shown in

Figure 1.4 and can be described as follows: If we choose an arbitrary point on

the base of this figure and denote its distance from 0 by , then the vertical

distance from this point to the curve is 2. In particular, if the length of the
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Fig. 1.4. A parabolic segment.

base itself is , the altitude of the figure is 2. The vertical distance from  to

the curve is called the ordinate at . The curve itself is an example of what

is known as a parabola. The region bounded by it and the two line segments

is called a parabolic segment (Figure 1.4). This figure may be enclosed in a

rectangle of base  and altitude 2, as shown in Figure 1.4. Examination of

the figure suggests that the area of the parabolic segment is less than half the

area of the rectangle. Archimedes made the surprising discovery that the area

of the parabolic segment is exactly one-third that of the rectangle; that is to

say,  = 33, where  denotes the area of the parabolic segment. We shall

show presently how to arrive at this result.

It should be pointed out that the parabolic segment in Figure 1.4 is not

shown exactly as Archimedes drew it and the details that follow are not exactly

the same as those used by him. Nevertheless, the essential ideas are those of

Archimedes; what is presented here is the method of exhaustion in modern

notation.

The method is simply this: We slice the figure into a number of strips and

obtain two approximations to the region, one from below and one from above,

by using two sets of rectangles as illustrated in Figure 1.5. (We use rectangles

rather than arbitrary polygons to simplify the computations.) The area of the

parabolic segment is larger than the total area of the inner rectangles but

smaller than that of the outer rectangles.

If each strip is further subdivided to obtain a new approximation with a

larger number of strips, the total area of the inner rectangles increases, whereas
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Fig. 1.5. Approximation from below and above.

the total area of the outer rectangles decreases. Archimedes realized that an

approximation to the area within any desired degree of accuracy could be

obtained by simply taking enough strips.

Let us carry out the actual computations that are required in this case. For

the sake of simplicity, we subdivide the base into  equal parts, each of length

 (see Figure 1.6). The points of subdivision correspond to the following

values of :

0




2



3


 

(− 1)






= 

A typical point of subdivision corresponds to  = , where  takes the

successive values  = 0 1 2 3  . At each point  we construct the

outer rectangle of altitude ()2 as illustrated in Figure 1.6. The area of

this rectangle is the product of its base and altitude and is equal toµ




¶µ




¶2
= 3

2

3

Let us denote by , the sum of the areas of all the outer rectangles. Then

since the th rectangle has area 3 
2

3
, we obtain the formula

 =
3

3

¡
12 + 22 + + 2

¢
 (1.1)

In the same way we obtain a formula for the sum , of the inner rectangles:

 =
3

3

³
12 + 22 + + (− 1)2

´
 (1.2)
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Fig. 1.6.

This brings us to a very important stage in the calculation. Notice that the

factor multiplying 3

3
in Equation (1.1) is the sum of the squares of the first

 integers:

12 + 22 + + 2

[The corresponding factor in Equation (1.2) is similar except that the sum

has only − 1 terms.] For a large value of , the computation of this sum by

direct addition of its terms is tedious and inconvenient. Fortunately there is an

interesting identity which makes it possible to evaluate this sum in a simpler

way, namely (see xxx) ,

12 + 22 + + 2 =
1

6
 (2+ 1) (+ 1)  (1.3)

Here for our purposes, we do not need the exact expression given in the right-

hand of (1.3). Al1 we need are the two inequalities

12 + 22 + + (− 1)2  3

3
 12 + 22 + + 2 (1.4)

which are valid for every integer  ≥ 1. These inequalities can be deduced

easily as consequences of (1.3). If we multiply both inequalities in (1.4) by 3

3

and make use of (1.1) and (1.2) we obtain

 
3

3
  (1.5)
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for every . The inequalities in (1.5) tell us that 3

3
is a number which lies

between , and , for every . We will now prove that
3

3
is the only number

which has this property. In other words, we assert that if  is any number

which satisfies the inequalities

     (1.6)

for every positive integer , then  = 3

3
. It is because of this fact that

Archimedes concluded that the area of the parabolic segment is 3

3
.

To prove that  = 3

3
, we use the inequalities in (1.4) once more. Adding

2 to both sides of the leftmost inequality in (1.4), we obtain

12 + 22 + + 2 
3

3
+ 2

Multiplying this by 3

3
and using (1.1), we find

 
3

3
+

3




Similarly, by subtracting 2 from both sides of the rightmost inequality in

(1.4) and multiplying by 3

3
, we are led to the inequality

3

3
− 3


 

Therefore, any number  satisfying (1.6) must also satisfy

3

3
− 3


  

3

3
+

3


(1.7)

for every integer  ≥ 1. Now there are only three possibilities:

 
3

3
  

3

3
  =

3

3


If we show that each of the first two leads to a contradiction, then we must

have  = 3

3
, since, in the manner of Sherlock Holmes, this exhausts all the

possibilities.

Suppose the inequality   3

3
were true. From the second inequality in

(1.7) we obtain

− 3

3


3


(1.8)
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for every integer  ≥ 1. Since − 3

3
is positive, we may divide both sides of

(1.8) by − 3

3
and then multiply by  to obtain the equivalent statement

 
3

− 3

3

for every . The right hand side of this inequality has a constant value. This

inequality is obviously false when  ≥ 3(− 3

3
) Hence the inequality  

3

3
leads to a contradiction. By a similar argument, we can show that the

inequality   3

3
also leads to a contradiction, and therefore we must have

 = 3

3
, as asserted.

1.3 Calculus in Action

During this course you will see how calculus plays a fundamental role in all of

science and engineering, as well as business and economics.

Example 1.1 The volume of wine barrels (see Fig. 1.7) was one of the prob-

lems solved using the techniques of calculus. See a solution at Volumes by

Integration (page ??).

Fig. 1.7. Wine barrel.

Example 1.2 Calculus is used to improve the efficiency of hard drives (see

Fig. 1.8) and other computer components.

Example 1.3 (Sustainable energy project in California) A power tower

produces electricity from sunlight by focusing thousands of sun-tracking mir-

rors, called heliostats, on a single receiver sitting on top of a tower (see Fig.

1.9). The receiver captures the thermal energy of the sun and stores it in tanks

of molten salt (to the right of the tower) at temperatures greater than 500 de-

grees centigrade. When electricity is needed, the energy in the molten salt is

used to create steam, which drives a conventional electricity-generating turbine

(to the left of the tower).
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Fig. 1.8. Hard drive.

Fig. 1.9. A power tower in California.
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1.4 Review exercises: Chapter 1

Exercise 1.1 Modify the region in Figure 1.4 by assuming that the ordinate

at each  is 22 instead of 2. Draw the new figure. Check through the principal

steps in the Section 1.2 and find what effect this has on the calculation of the

area. Do the same if the ordinate at each  is

b) 32

c) 1
4
2

d) 22 + 1

e) 2 + 

Exercise 1.2 Modify the region in Figure 1.4 by assuming that the ordinate

at each  is 3 instead of 2. Draw the new figure.

a) Use a construction similar to that illustrated in Figure 1.6 and show that

the outer and inner sums , and , are given by

 =
4

4

³
13 + 23 + + (− 1)3

´
  =

4

4

¡
13 + 23 + + 3

¢


b) Use the inequalities (which follow from the formula 13 + 23 +  + 3 =
2(+1)2

4

13 + 23 + + (− 1)3  4

4
 13 + 23 + + 3 (1.9)

to show that   4

4
 , for every , and prove that 4

4
is the only

number which lies between , and , for every .

c) What number takes the place of 4

4
if the ordinate at each  is 3 + ?

Exercise 1.3 The inequalities (1.4) and (1.9) are special cases of the more

general inequalities

1 + 2 + + (− 1)  +1

 + 1
 1 + 2 + +  (1.10)

that are valid for every integer  ≥ 1 and every integer  ≥ 1. Assume the
validity of (1.10) and generalize the results of Exercise 1.2.
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2

Logic and techniques of proof

2.1 Statements and Conditional Statements

Much of our work in mathematics deals with statements. In mathematics, a

statement is a declarative sentence that is either true or false but not both. A

statement is sometimes called a proposition . The key is that there must be no

ambiguity. To be a statement, a sentence must be true or false, and it cannot

be both. So a sentence such as “The sky is beautiful” is not a statement since

whether the sentence is true or not is a matter of opinion. A question such as

“Is it raining?” is not a statement because it is a question and is not declaring

or asserting that something is true.

Some sentences that are mathematical in nature often are not statements

because we may not know precisely what a variable represents. For example,

the equation

2+ 5 = 10

is not a statement since we do not know what  represents. If we substitute a

specific value for  (such as  = 3), then the resulting equation, 2 · 3+ 5 = 10
is a statement (which is a false statement).

How do we decide if a statement is true or false? In mathematics, we

often establish that a statement is true by writing a mathematical proof. To

establish that a statement is false, we often find a so-called counterexample.

(These ideas will be explored later in this chapter.) So mathematicians must

be able to discover and construct proofs. In addition, once the discovery has

been made, the mathematician must be able to communicate this discovery to

others who speak the language of mathematics.

One of the most frequently used types of statements in mathematics is the

so-called conditional statement. Given statements  and , a statement of the

form “If  then ” is called a conditional statement or implication It seems

reasonable that the truth value (true or false) of the conditional statement “If

 then ” depends on the truth values of  and . The statement “If  then

” means that  must be true whenever  is true. The statement  is called

the  of the conditional statement, and the statement  is called

the conclusion ??of the conditional statement. Since conditional statements
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  ⇒ 

  

  

  

  

Table 2.1. Truth table for implication

are probably the most important type of statement in mathematics, we give a

more formal definition.

Definition 2.1 A conditional statement is a statement that can be written in

the form “If  then ,” where  and  are simpler statements. For this con-

ditional statement,  is called the hypothesis and  is called the conclusion.

Intuitively, “If  then ” means that  must be true whenever  is true.

Because conditional statements are used so often, a symbolic shorthand nota-

tion is used to represent the conditional statement “If  then .” We will use

the notation

⇒  (2.1)

to represent1 “If  then.” When  and are statements, it seems reasonable

that the truth value (true or false) of the conditional statement⇒  depends

on the truth values of  and . There are four cases to consider:

 is true and  is true.  is true and  is false.

 is false and  is true.  is false and  is false.

The conditional statement ⇒  means that  is true whenever  is true.

It says nothing about the truth value of  when  is false. Using this as a

guide, we define the conditional statement ⇒  to be false only when  is

true and  is false, that is, only when the hypothesis is true and the conclusion

is false. In all other cases,  ⇒  is true. This is summarized in Table 2.1,

which is called a truth table for the conditional statement  ⇒ . (In Table

2.1,  stands for “true” and  stands for “false.”)

The important thing to remember is that the conditional statement ⇒ 

has its own truth value. It is either true or false (and not both). Its truth value

depends on the truth values for  and , but some find it a bit puzzling that

the conditional statement is considered to be true when the hypothesis  is

false. We will provide a justification for this through the use of an example.

1A symbol ⇒ is called the “forward implication arrow".



2.1 Statements and Conditional Statements 27

Example 2.2 Suppose that I say

“If it is not raining, then Daisy is riding her bike.”

We can represent this conditional statement as  ⇒  where  is the

statement, “It is not raining” and  is the statement, “Daisy is riding her

bike.”

Although it is not a perfect analogy, think of the statement ⇒  as being

false to mean that I lied and think of the statement  ⇒  as being true to

mean that I did not lie. We will now check the truth value of  ⇒  based

on the truth values of  and .

1. Suppose that both  and  are true. That is, it is not raining and Daisy

is riding her bike. In this case, it seems reasonable to say that I told the

truth and that ⇒  is true.

2. Suppose that  is true and  is false or that it is not raining and Daisy

is not riding her bike. It would appear that by making the statement,

“If it is not raining, then Daisy is riding her bike,” that I have not told

the truth. So in this case, the statement ⇒  is false.

3. Now suppose that  is false and  is true or that it is raining and Daisy

is riding her bike. Did I make a false statement by stating that if it is not

raining, then Daisy is riding her bike? The key is that I did not make any

statement about what would happen if it was raining, and so I did not

tell a lie. So we consider the conditional statement, “If it is not raining,

then Daisy is riding her bike,” to be true in the case where it is raining

and Daisy is riding her bike.

4. Finally, suppose that both  and  are false. That is, it is raining and

Daisy is not riding her bike. As in the previous situation, since my state-

ment was  ⇒ , I made no claim about what would happen if it was

raining, and so I did not tell a lie. So the statement  ⇒  cannot be

false in this case and so we consider it to be true.

Hear are some examples of implication. Note that often a preliminary state-

ment must be made, explaining what the symbols in the  ⇒  statement

stand for.

Example 2.3

i) ,, are the vertices of a triangle;    are the non-zero lengths of the

opposite sides, respectively.

 is a right angle⇒ 2 + 2 = 2(true)
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ii) Let  be a real number.

26 + 4 + 32 = 0⇒  = 0 (true)

iii) Let    be positive integers.

 divides ⇒  divides  or  (false)

We shall use where possible the arrow notation, since it allows the hypothesis

and conclusion to stand out clearly. But with the if-then form one can avoid

a preliminary sentence:

"If  is a real number such that 26 + 4 + 32 = 0, then  = 0."

However, the problem with all of this is that in ordinary mathematical writing,

the hypothesis and conclusion may not be spelled out so clearly; it is you that

has to extract them from the prose sentence. For instance, (ii) would probably

appear in the form:

ii’) 0 is the only real root of 26 + 4 + 32 = 0

Thus, if a statement is given in the form ⇒  , some of the work has already

been done for you.

Definition 2.4 If we interchange hypothesis and conclusion in  ⇒ , we

get

 ⇒  (or ⇐ ) (2.2)

which is called the converse to the statement (2.1).

Example 2.5 The converses to implications from example (2.3) are (omitting

the preliminaries):

i) 2 + 2 = 2 ⇒  is a right angle. (true)

ii)  = 0⇒ 26 + 4 + 32 = 0 (true)

iii)  divides  or ⇒  divides  (true)
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2.2 Equivalent statements

We can combine the two implication arrows into one double-ended arrow:

⇔  (2.3)

which is a true statement if both ⇒  and ⇐  are true. If this is so, we

say  and  are equivalent statements. To give our examples one last time:

Example 2.6

i) 2 + 2 = 2 ⇔  is a right angle. (true)

ii)  = 0⇔ 26 + 4 + 32 = 0 (true)

iii)  divides  or ⇔  divides  (false)

There are two verbal forms of⇔ which are in common use. We will mostly

avoid them, but others do not, so you should know them. They are:

 if and only if  (abbreviated:  iff )

 is a necessary and sufficient condition for  (abbreviated: ).

Occasionally these are separated into their component parts:

• ⇒ ;  is a sufficient condition for  (if  is true,  follows);

•  ⇒ ;  is a necessary condition for  (i.e.,  can’t be true unless

 is also true, since  implies ).

2.3 Stronger and weaker

If ⇒  is true, but  ⇒  is false, we say:  is a stronger statement than

;  is weaker than .

Example 2.7 “∆ is equilateral” is stronger than “∆ is isosceles”,

since

∆  is equilateral ⇒ ∆  is isosceles

but

∆  is isosceles ⇒ ∆  is equilateral.

is false.
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The same terminology applies to entire “if-then” statements (theorems):

Example 2.8 The if-then statement

∆  is equilateral ⇒ ∆  has two equal angles (2.4)

can be made stronger in two different ways: make the hypothesis weaker:

∆  is isosceles ⇒ ∆  has two equal angles, (2.5)

or make the conclusion stronger:

∆  is equilateral ⇒ ∆  has three equal angles. (2.6)

Both (2.5) and (2.6) are stronger than (2.4) since they both imply (2.4): if

you know (2.5) or (2.6) is true, then (2.4) follows, but not vice-versa.

Strengthen ⇒  by making  stronger, or  weaker.

2.4 Contraposition and indirect proof

We turn now to discussing a style of mathematical proof which involves forming

the negatives of statements.

Negation. In general, if  is a statement, we will use either not- or ∼ 

to denote its negation. Often the word "not" doesn’t appear explicitly

in the negation. Here are three examples (in the first,  is a positive

integer).

 ∼ 

 is prime  is composite or  = 1

  2  ≤ 2
42 + 2 = 36 42 + 2 6= 36

Contraposition. In proving ⇒ , sometimes it is more convenient to use

contraposition, i.e., prove the statement in its contrapositive form:

∼  ⇒∼  (contrapositive of ⇒ ).

This means exactly the same thing as  ⇒ : if you prove one, you’ve

proved the other. We will give a little argument for this later; however

you will probably be even more convinced by looking at examples. Below,
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the original statement is on the left, the contrapositive is on the right;

they say the same thing.

 ≥ 0⇒√ is real
√
 not real ⇒   0

42 + 2 = 36 42 + 2 6= 36

Example 2.9 Prove
¡
26 + 4 + 32 = 0

¢⇒  = 0.

Solution: We use contraposition

 6= 0

⇒ 2  0 4  0 6  0;

⇒ 26 + 4 + 32  0

⇒ 26 + 4 + 32 6= 0

¤

Indirect proof. This has the same style as contraposition but is more gen-

eral. To give an indirect proof that a statement  is true, we assume it is

not true and derive a contradiction, i.e., show some statement  is both

true and false.  can be anything.

Example 2.10 Prove that
√
2 is irrational.

Solution: (Indirect proof). Suppose it were rational, that is,

√
2 =






we may assume the fraction on the right is in lowest terms, i.e.,  and  are

integers with no common factor. (Call this last clause “statement ”.) If we

cross-multiply the above and square both sides, we get

22 = 2

the left side is even, so the right side is even, which means a itself is even

(since the square of an odd number is easily seen to be odd). Thus we can

write  = 20, where 0 is an integer. If we substitute this into the above
equation and divide both sides by 2, we get

2 = 2
¡
0
¢2
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by the same reasoning as before,  is even. Since we have shown both  and 

are even, they have 2 as a common factor; but this contradicts the statement

 2 ¤
The above (attributed to Pythagoras) is probably the oldest recorded indi-

rect proof.

Remark 2.11 In 1999 mathematicians Jack and Paul Abad, set forth on the

arduous journey of generating the list of the 100 Greatest Theorems of Math-

ematics. In making the list, they used 3 criteria:

• the place the theorem holds in literature,

• the quality of the proof,
• the unexpectedness of the result.
What did they come up with? Below is their top 5. For the complete list, see

http://musingsonmath.com/2011/10/26/the-100-greatest-theorems-of-mathematics/.

1. The Irrationality of the Square Root of 2 by Pythagoras (500 B.C.)

2. Fundamental Theorem of Algebra by Karl Frederich Gauss (1799).

3. The Denumerability of the Rational Numbers by Georg Cantor (1867).

4. Pythagorean Theorem by Pythagoras (500 B.C.)

5. Prime Number Theorem by Jacques Hadamard and Charles-Jean de la

Vallee Poussin - separately (1896).

The above Example (2.10) which occupies the top of this list, is a little

atypical for us, in that almost always in this book the statement  to be

proved will be an if-then statement ⇒ . To prove it indirectly, we have to

derive a contradiction from the assumption that  ⇒  is false, i.e., that 

does not imply : in other words,  can be true, yet  be false. So we can

now formulate

Indirect proof for if-then statements.

To prove ⇒  indirectly, assume  true but  false, and derive a contra-

diction:  and ∼  are both true. Our earlier proof by contraposition is just

the special type of indirect proof where  = . Namely, to prove  ⇒  by

contraposition, we

2Note how the statement  to be contradicted just appears in the course of the proof; it’s not

part of the statement of the theorem.
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a) assume  true and  false (i.e., ∼  true);

b) prove ∼  ⇒ ∼  (the contrapositive).

It follows that ∼  is true, which contradicts our assumption that  is true.

To confuse you a little further, we illustrate the difference between the two

styles of proof by giving two proofs of a simple proposition.

Proposition. 2 = 0⇒  = 0.

Proof by contraposition.

 6= 0⇒   0  0;

⇒ 2  0;

⇒ 2 6= 0 ¤

Indirect proof. Suppose the conclusion is false, that is, 2 = 0, but  6= 0.
Since  6= 0, we can divide both sides of the above equation by ; this gives

 = 0 (2.7)

which contradicts our supposition that  6= 0. ¤
Why not just stop the proof at line (2.7) – it says  = 0 and isn’t that what

we were supposed to prove? This would be wrong; the last line of the proof is

absolutely essential. We only got to line (2.7) by making a false supposition:

that  6= 0. Therefore (2.7) has no validity in itself; it is only a line in a bigger
argument whose ultimate goal is to produce a contradiction.

The advantage of contraposition over the more general type of indirect proof

is that since we know at the outset the statement  that is going to be contra-

dicted, what has to to be proved (∼  ⇒ ∼  ) becomes a direct statement

that we hope can be proved by a direct argument.

Example 2.12 Formulate the negative statement without using “not”:

a) In the plane, lines  and  are parallel.

b) Triangle  is isosceles.

c) There are infinitely many prime numbers.

Solution:

a)  and  intersect in one point. (Why specify "one point"?)

b) Triangle  has sides of three different lengths.
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c) There are only a finite number of primes. ¤

Example 2.13 Write the converse and contrapositive, using ⇒, and mark 
or  :

The square of an odd integer a is odd.

Solution:

Converse: 2 odd ⇒  odd. ( )

Contrapositive: 2 even ⇒  even. ( )

Example 2.14 Prove the following by contraposition (the  are real num-

bers):

a) if 12  0, exactly one of the   0..

b) if 1 + +  = , at least one   1.

Solution:

a) (a) 1 ≥ 0 and 2 ≥ 0 ⇒ 12 ≥ 0; 1  0 and 2  0 ⇒ 12  0.

b) All   1 ⇒ 1 + 2 + +   .

2.5 Counterexamples

Some statements in mathematics are particular, i.e., they assert that some-

thing is true for some definite numbers, or other objects. For example.

32 + 42 = 52; ∆  is isosceles; there is a number ≥ 22.

Other statements are general; they assert something about a whole class of

numbers or other objects. For example:

i) if  and  are numbers satisfying 2 = 2, then  = ;

ii) a triangle with three equal sides has three equal angles;

iii) every positive integer  is the sum of four squares of integers:

 = 21 + 22 + 23 + 24;

iv) if    are numbers satisfying  = , then  = .
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These respectively assert that something is true about any numbers sat-

isfying 2 = 2, all equilateral triangles, all positive integers, any numbers

satisfying  = .

As it happens, statements ) and ) are true – ) is hard to prove –

while ) and ) are false. The problem we consider is:

How does one show a general statement like i) or iv) is false?

Since a general statement claims something is true for every member of some

class of objects, to show it is false we only have to produce a single object in

that class for which the general statement fails to hold. Such an object is called

a counterexample to the general statement. For example a counterexample to

) would be the pair  = 3,  = −3. (What would be a counterexample to )?)

2.6 Mathematical induction

The principle of mathematical induction is especially useful in proving state-

ments involving all positive integers  ≥ some 0 when it is known for

example that the statements () are valid for  = 0; 0 + 1; 0 + 2 but it

is suspected or conjectured that they hold for all positive integers  ≥ 0. The

method of proof consists of the following steps:

1. Prove the statement () for  = 0 (the basis step).

2. Assume the statement () true for  = ; where  is any positive integer

≥ 0.

3. From the assumption in 2 prove that the statement () must be true for

 = +1 (the induction step). This is part of the proof establishing the

induction and may be difficult or impossible.

4. Since the statement () is true for  = 0 (from step 1) it must (from

step 3) be true for  = 0 + 1 and from this for  = 0 + 2, and so on,

and so () must be true for all positive integers ≥ 0.

A well-known illustration used to explain why the Principle of Mathematical

Induction works is the unending line of dominoes represented by Figure 2.1. If

the line actually contains infinitely many dominoes, it is clear that you could

not knock down the entire line by knocking down only one domino at a time.

However, suppose it were true that each domino would knock down the next

one as it fell. Then you could knock them all down simply by pushing the first
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Fig. 2.1. Dominoes in a row

one and starting a chain reaction. Mathematical induction works in the same

way. If the truth of  implies the truth of +1 and if 1 is true, the chain

reaction proceeds as follows: 1 implies 2 2 implies 3 3 implies 4 and

so on.

Example 2.15 Use mathematical induction to prove the formula

X
=1

2 = 12 + 22 + 32 + 42 + + 2 =
1

6
 (2+ 1) (+ 1)

for all integers  ≥ 1

Proof.

1. When  = 1 the formula is valid because

1X
=1

2 = 12 =
1

6
1 (2 · 1 + 1) (1 + 1) = 1 · (2) · (3)

6


2. Assuming that

X
=1

2 = 12 + 22 + 32 + 42 + + 2 =
1

6
 (2 + 1) ( + 1)
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we must show that

+1X
=1

2 = 12 + 22 + 32 + 42 + + 2 + ( + 1)2

=
1

6
( + 1) (2 ( + 1) + 1) (( + 1) + 1)

=
1

6
( + 1) (2 + 3) ( + 2) 

To do this we write the following :

+1X
=1

2 =

X
=1

2 + ( + 1)2

=
1

6
 (2 + 1) ( + 1) + ( + 1)2 by assumption

=
( + 1)

¡
22 + 7 + 6

¢
6

1

6
( + 1) (2 + 3) ( + 2) 

Combining the results of parts 1) and 2), we can conclude by mathemat-

ical induction that the formula is valid for all integers  ≥ 1

The formula in Proposition 2.15 is one of a collection of useful summation

formulas. This and other formulas dealing with the sums of various powers of

the first positive integers are summarized below.

Sums of powers of Integers:

1.
X
=1

 = 1 + 2 + 3 + 4 + +  =
1

2
 (+ 1) (2.8)

2.
X
=1

2 = 12 + 22 + 32 + 42 + + 2 =
1

6
 (2+ 1) (+ 1) (2.9)

3.
X
=1

3 = 13 + 23 + 33 + 43 + + 3 =
1

4
2 (+ 1)2 (2.10)
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4.

X
=1

4 = 14+24+34+44+ +4 =
1

30
 (2+ 1) (+ 1)

¡
32 + 3− 1¢

(2.11)

5.

X
=1

5 = 15+25+35+45++5 =
1

12
2 (+ 1)2

¡
22 + 2− 1¢ (2.12)

Each of these formulas for sums can be proven by mathematical induc-

tion (although other methods exist) . These problems are all related, and are

all pretty mechanical. (See Exercise 2.15.) The following will illustrate the

method of induction for many of the examples used in the rest of the book.

Using mathematical induction we can, for example, easily generalize triangle

inequality.

Example 2.16 (Proving an Inequality by Mathematical Induction)

Suppose that 1 2   are real numbers
3. Prove by induction, that

|1 + 2 + · · ·+ | ≤ |1|+ |2|+ · · ·+ || 

Solution: Letting () denote |1 + 2 + · · ·+ | ≤ |1|+ |2|+ · · ·+ ||
we already know that both (1) and (2) are true. That is the fact that

|1| ≤ |1| establishes the truth of (1), while the “triangle inequality" states
that |1 + 2| ≤ |1|+ |2|  which establishes the truth of (2) Let’s assume
|1 + 2 + · · ·+ | ≤ |1| + |2|+ · · · + || is true. Then the required result
follows as soon as we can prove that

|1 + 2 + · · ·+ +1| ≤ |1|+ |2|+ · · ·+ |+1| 

Well

|1 + 2 + · · ·+ +1| = |(1 + 2 + · · ·+ ) + +1|
≤ |1 + 2 + · · ·+ |+ |+1|
≤ (|1|+ |2|+ · · ·+ ||) + |+1|

(by the assumption that () is true). Since (by associative rule for addition)

(|1|+ |2|+ · · ·+ ||) + |+1| = |1|+ |2|+ · · ·+ ||+ |+1|
3 In fact, the same approach can be used in the complex case.



2.6 Mathematical induction 39

the required result follows.¤
It is important to recognize that in order to prove a statement by induction,

both parts of the Principle of Mathematical Induction are necessary.

Example 2.17 Let  be the proposition that

!− 4  0

We will prove it by mathematical induction, but the initial index 0 must be

chosen with a special care here. If  is true, then

( + 1)!− 4+1 = ! ( + 1)− 4+1
 4 ( + 1)− 4+1
= 4( − 3)

(by the induction assumption). Therefore,  implies +1 if   3. By trial

and error, 0 = 9 is the smallest integer such that 0 is true; hence, the basis

step is 9!− 49  0 and the proposition is true for  ≥ 9 only.
We’ll end this subsection by demonstrating one more use of this technique.

This time we’ll look at a formula for a product rather than a sum.

Proposition 2.18 If  ∈ Z and  ≥ 2, then
Y

=2

(1− 1

2
) =

+ 1

2


Proof. (Using mathematical induction on )

Basis: When  = 2 the product has only one term, 1 − 122 = 34 On

the other hand, the formula is 2+1
2·2 = 34 Since these are equal, the basis is

proved.

Inductive step: Let  ≥ 2 be a particular but arbitrarily chosen integer such
that

Y
=2

(1− 1

2
) =

 + 1

2

Multiplying4 both sides by the  + 1-th term of the product givesµ
1− 1

( + 1)2

¶ Y
=2

(1− 1

2
) =

µ
1− 1

( + 1)2

¶
 + 1

2

4Please, notice that when you’re doing the inductive step in a proof of a formula for a product,

you don’t add to both sides anymore, you multiply.
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Thus

+1Y
=2

(1− 1

2
) =

µ
1− 1

( + 1)2

¶
 + 1

2

=
 + 1

2
−  + 1

2 ( + 1)2

=
 + 1

2
− 1

2 ( + 1)

=
( + 1)2 − 1
2 ( + 1)

=
2 + 2

2 ( + 1)

=
 + 2

2 ( + 1)

=
( + 1) + 1

2 ( + 1)


Example 2.19 For each nonnegative integer , let  be a real number and

suppose that

|+1 − | ≤  | − −1| if  ≥ 1 (2.13)

where  is a fixed positive number. By considering (2.13) for  = 1 2 and 3,

we find that

|2 − 1| ≤  |1 − 0| 
|3 − 2| ≤  |2 − 1| ≤ 2 |1 − 0| 
|4 − 3| ≤  |3 − 2| ≤ 3 |1 − 0| 

Therefore, we conjecture that

| − −1| ≤ −1 |1 − 0| if  ≥ 1 (2.14)

This is trivial for  = 1. If it is true for some , then (2.13) and (2.14) imply

that

|+1 − | ≤ 
³
−1 |1 − 0|

´


so

|+1 − | ≤  |1 − 0| 
Hence (by induction) inequality (2.14) is true for every positive integer  ¤
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The interesting thing about the induction is that it does not just work for

staff you can write down as a formula. It also works for things like geomet-

ric statement such as in the example below, where we generalize the result

you know from elementary geometry, that the sum of the interior angles in a

triangle is equal to 

Example 2.20 The sum of the interior angles of a plane -gon with  ≥ 3
vertices is (− 2).
So we want to show, that any time we add a new corner it increases the sum

of angles by 

Solution:

• Base step,  = 3. The case  = 3 is a well-known result for triangles.

• Induction step. Idea: If we cut a corner off an (+ 1)-gon, we get an -

gon. Let  be greater or equal to 3We are done if cutting a corner off an

(+1)-gon reduces the sum of the interior angles by . We always want

to cut a corner in such a way that we go from one vertex to another, non—

adjacent vertex (see Fig. 2.2). But first of all we have to find the right

corner. If we just put the connection from +1 to −1 then in case of
the "convex corner" i.e. when the interior of a triangle +1−1 is
contained in the interior of our ( + 1)-gon (see Fig. 2.4) then +1 +

 + −1 =  and that is exactly of what is missing if we cut off

that corner. It could also happen that we have another "concave" corner

(see Fig. 2.3) which "cuts" our segment +1−1 but in this highly
irregular case will consider (below) the triangle +1−1 rather than
+1−1. In the case of the concave corner (see Fig. 2.5) we loose
2 −  and wee gain  − (−1 + +1), so totally we have lost  So,

in this case the result is also proven because of the -gone assumption.

¤

Example 2.21 (Towers of Hanoi) Suppose you have three posts and a stack

of  disks, initially placed on one post with the largest disk on the bottom and

each disk above it is smaller than the disk below (see Fig. 2.6). A legal move

involves taking the top disk from one post and moving it so that it becomes

the top disk on another post, but every move must place a disk either on an

empty post, or on top of a disk larger than itself. Show that for every n there

is a sequence of moves that will terminate with all the disks on a post different

from the original one. How many moves are required for an initial stack of 

disks?
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Fig. 2.2. Finding the right corner.

Fig. 2.3. The "concave" corner.



2.6 Mathematical induction 43

Fig. 2.4. Cutting a “convex corner”.

Fig. 2.5. Cutting a “concave corner”.

Fig. 2.6. The Towers of Hanoi
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Solution: Again, this is an easy induction proof. If there is only one disk

on a post, you can immediately move it to another post and you are done.

If you know that it is possible to move  disks to another post, then if you

initially have  + 1 disks,move the top  of them to a different post, and

you know that this is possible. Then you can move the largest disk on the

bottom to the other empty post, followed by a movement of the  disks to

that other post. This method, which can be shown to be the fastest possible,

requires 2 − 1 steps to move  disks. This can also be shown by induction—
if  = 1, it requires 21 − 1 = 1 move. If it’s true for stacks of size up to 

disks, then to move  + 1 requires 2 − 1 (to move the top  to a different

post) then 1 (to move the bottom disk), and finally 2 − 1 (to move the 

disks back on top of the moved bottom).The total for  + 1 disks is thus

(2 − 1) + 1 + (2 − 1) = 2 · 2 − 1 = 2+1 − 1
Inductive proofs not always are so easy and mechanical. Here is an example:

Example 2.22 Prove by induction that for any positive integer 

1 +
1

4
+ +

1

2
≤ 2− 1




Solution: Base case ( = 1):

1 ≤ 2− 1
1


Induction step: Assume that for some 1 ≤ 

1 +
1

4
+ +

1

2
≤ 2− 1




Then

1 +
1

4
+ +

1

2
+

1

( + 1)2
≤ 2− 1


+

1

( + 1)2


so it will suffice to show

2− 1

+

1

( + 1)2
≤ 2− 1

 + 1


Equivalently, it suffices to show

1

 + 1
+

1

( + 1)2
≤ 1




But we have
1

 + 1
+

1

( + 1)2
=
( + 2)

( + 1)2



2.6 Mathematical induction 45

Everything in sight is positive, so by clearing denominators, the desired in-

equality is equivalent to

2 + 2 = ( + 2)  ( + 1)2 = 2 + 2 + 1

which is true! Thus we have all the ingredients of an induction proof, but

we need to put things together in proper order, a task which we leave to the

reader.¤

Example 2.23 Prove by induction that for any positive integer 

1 +
1

2
+
1

3
+
1

4
+
1

5
+ +

1

(2 − 1) ≤
1− ¡1

2

¢(−1)
1− ¡1

2

¢(−1) ( 6= 1)

Solution: In case  = 1 both sides of the inequality are 1 and so the result

holds for  = 1 Assume that the results holds for some positive integer − 1
Then

1 +
1

2
+
1

3
+
1

4
+
1

5
+ +

1

(2−1 − 1) ≤
1− ¡1

2

¢(−1)(−1)
1− ¡1

2

¢(−1)
and so trying to derive the result for  =  we deduce that

1 +
1

2
+
1

3
+
1

4
+
1

5
+ +

1

(2 − 1)

=

µ
1 +

1

2
+
1

3
+
1

4
+
1

5
+ +

1

(2−1 − 1)
¶

+

µ
1

(2−1)
+

1

(2−1 + 1)
+

1

(2 − 1)
¶

| {z }
2−1 terms each ≤ 1

(2−1)

≤ 1− ¡1
2

¢(−1)(−1)
1− ¡1

2

¢(−1) +

µ
1

2

¶(−1)(−1)

≤ 1− ¡1
2

¢(−1)
1− ¡1

2

¢(−1)
Example 2.24 Into how many regions do  straight lines “in general posi-

tion” divide the plane? By “in general position” we mean that no two lines

are parallel and no three lines are concurrent (see Fig. 2.7).
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Fig. 2.7. Three straight lines “in general position”

Solution: With a bit of experimentation we can discover that the number

we want is Reg(), where the first few values are given by the table

 1 2 3 4 5

Reg() 2 4 7 11 16


The relationship between  and Reg(), of course, is not linear. If one suspects

that the answer is a quadratic function of , of the form

2 + + 

then one can put  = 1 2 3 in succession and solve the equations

+ +  = 2

4+ 2+  = 4

9+ 3+  = 7

to find  =  = 12  = 1Certainly the formula

Reg() =
1

2

¡
2 + + 2

¢
is correct for  = 1 2 3 4 5. Suppose inductively that it is true for 1 ≤ , so

that  lines divide the plane into 1
2

¡
2 +  + 2

¢
regions. The ( + 1)-th line

intersects with each of the existing  lines in  points, and is divided into +1
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segments by these points. Each of these segments divides an existing region

into two, and so the number of new regions created is  + 1. Thus

Reg( + 1) =
1

2

¡
2 +  + 2

¢
+ ( + 1)

=
1

2

¡
2 +  + 2 + 2 + 2

¢
=

1

2

£¡
2 + 2 + 1

¢
+ (+ 1) + 2

¤
=

1

2

£
( + 1)2 + ( + 1) + 2

¤
and so the result is proved by induction. ¤

Example 2.25 (Arithmetic, Geometric, and Harmonic means) Let

 = {1 2  }

be a set of positive numbers. We define the arithmetic, geometric, and har-

monic means (A() G() and H() respectively) as follows:

A() =
1 + 2 + · · ·+ 




G() = 
√
12 · · · 

H() =


1
1
+ 1

2
+ · · ·+ 1





Show that

H() ≤ G() ≤ A() (2.15)

The actual solution is proceeded below by a couple of hints.

HINT: Once you prove that G() ≤ A() then you can find a relationship
between the harmonic and geometric means that proves the inequality between

those two means.

HINT: Prove that G() ≤ A() if the set  has 2 elements. Later, show it

is true for an arbitrary number of elements.

Solution: We will first show that

G() ≤ A() (2.16)
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if  contains 2 values. This can be done by induction. If  = 1 then Equation

(2.16) amounts to:

1 ≤ 1

which is trivially true.

To see how the induction step works, just look at going from  = 1 to  = 2.

We want to show that: √
12 ≤ 1 + 2

2


Square both sides, so our problem is equivalent to showing that:

12 ≤ 21 + 212 + 22
4

or that

0 ≤ 21 − 212 + 22
4

=
(1 − 2)

2

4


This last result is clearly true, since the square of any number is positive. So

in general, suppose it’s true for sets of size  = 2 and we need to show it’s

true for sets of size 2 = 2+1, or in other words show that:

2
√
12 · · · 2 ≤ 1 + 2 + · · ·+ 2

2
 (2.17)

Rewrite inequality 2.17 asq

√
12 · · ·  

√
+1+2 · · · 2 ≤ 1 + 2 + · · ·+ 2

2


If we let

 = 
√
12 · · · 

 = 
√
+1+2 · · · 2

 =
1 + 2 + · · ·+ 




 =
+1 + +2 + · · ·+ 2



and we know that  ≤  and  ≤  (because the induction hypothesis tells

us so for  = 2) then we need to show that

√
 ≤ +

2
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But we showed above that

√
 ≤ (+)2

and we know that

√
 ≤

√


so we are done. But of course, not all sets have a cardinality that is exactly a

power of 2. Suppose we want to show that it’s true for a set of cardinality ,

where 2 ≤    = 2. Our set  = {1 2  } contains  elements. Let

 =
1 + 2 + · · · + 


 (2.18)

If we add − copies of  to the original members of the set , we will have

a new set 
0
with  = 2 members:


0
= {1 2      }

Since we know that G(0
) ≤ A(0

), we have:


p
12 · · · − ≤

µ
1 + 2 + · · · +  + ( −)



¶
 (2.19)

If we raise both sides of Equation (2.19) to the power  and do some algebra,

we get:

12 · · · −

≤
µ




µ
1 + 2 + · · · + 



¶
+

 −



µ
1 + 2 + · · · + 



¶¶



which gives (see 2.18)

12 · · ·  ≤
µ



+

 −




¶

−

and

12 · · ·  ≤ − =  =

µ
1 + 2 + · · · + 



¶

This is exactly what we were trying to prove. Now to complete the problem,

we need only show that H() ≤ G() for 1 ≤ . To see this, consider the set


00
= {11 12 1}
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We know that the geometric mean is less than the arithmetic mean, so apply

that fact to the set 
00
:



r
1

12 · · ·  =
1


√
12 · · ·  ≤

Ã
1
1
+ 1

2
+    1





!


If we invert both sides of the inequality (which will flip the direction ), we

have the desired result. ¤
The problem many beginners have with proof by induction is, of course,

the apparent circularity: “How can you assume and use () in the proof,

since that ’s what you’re trying to prove?” The answer is, it’s ( + 1) that

you’re trying to prove. The same problem appears in recursive definitions: in

the briefest and most efficient form, the definition of ! is

! =  · (− 1)! 0! = 1

The definition looks circular, but because the factorial on the right is for a

smaller , the definition makes sense.

In computer science, particularly, the idea of induction usually comes up

in a form known as recursion. Recursion (sometimes known as “divide and

conquer”) is a method that breaks a large (hard) problem into parts that

are smaller, and usually simpler to solve. If you can show that any problem

can be subdivided into smaller ones, and that the smallest problems can be

solved, you have a method to solve a problem of any size. Obviously, you

can prove this using induction. Here’s a simple example. Suppose you are

given the coordinates of the vertices of a simple polygon (a polygon whose

vertices are distinct and whose sides don’t cross each other), and you would

like to subdivide the polygon into triangles. If you can write a program that

breaks any large polygon (any polygon with 4 or more sides) into two smaller

polygons, then you know you can triangulate the entire thing. Divide your

original (big) polygon into two smaller ones, and then repeatedly apply the

process to the smaller ones you get. The concept of recursion is not unique to

computer science—there are plenty of purely mathematical examples.

We can asks for a proof that the method of induction works; it is a good

example of indirect proof.

Problem 2.26 Prove the method of regular induction works: that is, if (0)

is true and ( + 1) is true whenever () is, for  ≥ 0, then () is true

for all  ≥ 0 .

Proof.We will consider the set  = { ≥ 0 : () is false}; which has a least
element. We prove by indirect argument that  is empty, i.e., that () is true
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for all  ≥ 0. If  is non-empty, then it contains a smallest integer   0 ,

and () is false. Look at the number just before :

− 1 ≥ 0 since  ≥ 0 and  6= 0 for (0) is true,

− 1 ∈  since  is the smallest number in .

Therefore (−1) is true; but since () = (+1) for  ≥ 0, it follows that

() is true, contradiction.(Note: The self-evident fact we used:a non-empty

set of positive integers has a smallest element is known as the well-ordering

property of N.).

2.7 Strong (complete) induction

When one uses in the proof of () not just the preceding value but lower

values of  as well, the proof method is generally referred to as strong or

complete induction; in this style of induction, often more than one value of 

is needed for the basis step.

Example 2.27 Prove that every integer   2 is the product of primes.

Solution: Here is a case where you can only use strong induction, since

there is no relation between the prime factorizations of  and  + 1 If  is

prime, we are done. If not, it factors into the product of two smaller positive

integers, both ≥ 2 (since the factorization is not the trivial one  =  · 1):

 = 1 · 2 2 ≤ 1 2  

= (12 · · · ) (12 · · · )

since by strong induction, we can assume the smaller numbers 1 and 2 factor

into the product of primes. ¤

Example 2.28 Let 1 = 2, 2 = 0 3 = −14 and

+1 = 9 − 23−1 + 15−2  ≥ 3

Show by induction, that  = 3
−1 − 5−1 + 2  ≥ 1
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Solution: (1), (2) and (3) are true by inspection. Suppose that (),

( − 1) and ( − 2) are true for some  ≥ 3 Then
+1 = 9

³
3−1 − 5−1 + 2

´
− 23

³
3−2 − 5−2 + 2

´
+ 15(3−3 − 5−3 + 2)

=
³
9 · 3−1 − 23 · 3−2 + 15 · 3−3

´
−
³
9 · 5−1 − 23 · 5−2 + 15 · 5−3

´
+ 2 (9− 23 + 15)

= 3−2 (27− 23 + 5)− 5−2(45− 23 + 3) + 2
= 3 − 5 + 2

which implies ( + 1) Now we can use Theorem ?? ¤
Here we proved (+1), using in the proof not just () but (− 1) and

( − 2) as well.

2.8 Inductive definition

In addition to proof by induction, there is also inductive definition or as it is

also called, recursive definition, in which the terms of a sequence {},  ≥ 0
are defined by expressing them in terms of lower values of ; as the basis, a

starting value ano must also be given.

Example 2.29 Let  = −1 + 1
(+1)

; 0 = 0. Find a formula for .

Solution: We have

1 = 0 + 1(1 · 2) = 1

2


2 = 1 + 1(2 · 3) = 2

3


3 = 2 + 1(3 · 4) = 3

4
so we guess

 =


+ 1


Taking this last statement as (), we prove it by induction. It is true for 0;

as the induction step, we get for  ≥ 1
 = −1 +

1

 ( + 1)

=
 − 1


+
1

 ( + 1)
using ( − 1)

=


 + 1
by algebra
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which completes the proof by induction. ¤
Notice that here we proved (), using ( − 1).
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3

The derivative

This chapter gives a complete definition of the derivative assuming a knowledge

of high-school algebra, including inequalities, functions, and graphs. The next

chapter will reformulate the definition in different language, and in the next

we will prove that it is equivalent to the usual definition in terms of limits.

The definition uses the concept of change of sign, so we begin with this.

3.1 Change of sign

A function is said to change sign when its graph crosses from one side of the

 axis to the other. We can define this concept precisely as follows.

Definition 3.1 Let  be a function and 0 a real number. We say that 

changes sign from negative to positive at 0 if there is an open interval ( )

containing 0 such that  is defined on ( ) (except possibly at 0) and

()  0 if     0

and

()  0  0    

Similarly, we say that  changes sign from positive to negative at 0 if there

is an open interval ( ) containing 0 such that  is defined on ( ) (except

possibly at 0) and

()  0      0

and

()  0  0    

Notice that the interval ( ) may have to be chosen small, since a function

which changes sign from negative to positive may later change back from

positive to negative (see Fig. 3.1).

Example 3.2 Where does () = 2 − 5+ 6 change sign?
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Fig. 3.1. Change of sign.

Solution: We factor  and write () = ( − 3)( − 2) The function 

changes sign whenever one of its factors does. This occurs at  = 2 and  = 3.

The factors have opposite signs for  between 2 and 3, and the same sign

otherwise, so  changes from positive to negative at  = 2 and from negative

to positive at  = 3 (See Fig. 3.2). ¤
We can compare two functions,  and , by looking at the sign changes of

the difference ()− () The following example illustrates the idea.

Example 3.3 Let () = 1
2
3 − 1 and () = 2 − 1

a) Find the sign changes of ()− ().

b) Sketch the graphs of  and  on the same set of axes.

c) Discuss the relation between the results of parts a) and b).

Solution:

a) ()− () = 1
2
3 − 1− (2 − 1) = 1

2
2(− 2). Since the factor  appears

twice, there is no change of sign at  = 0 (2 is positive both for   0

and for   0). There is a change of sign from negative to positive at

 = 2.

b) See Fig. 3.3
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Fig. 3.2. Function  = 2 − 5+ 6 changes sign at  = 2 and  = 3

c) Since ()− () changes sign from negative to positive at  = 2, we can

say: If  is near 2 and   2, then ()−()  0; that is, ()  ()

And, if  is near 2 and   2, then ()− ()  0; that is,()  ()

Thus the graph of  must cross the graph of  at  = 2, passing from

below to above it as  passes 2 ¤.

Example 3.4 If () is a polynomial and (0) = 0, must  necessarily

change sign at 0?

Solution: No. The polynomial () = 2−2+1 = (−1)2 (for example)
has a root at 1, but it does not change sign there, since ( − 1)2  0 for all

 6= 1 ¤.
Example 3.5 For which positive integers  does () =  change sign at

zero?

Solution: For  even,   0 for all  6= 0, so there is no sign change. For 
odd,  is negative for   0 and positive for   0, so there is a sign change

from negative to positive at zero ¤.

Example 3.6 If 1 6= 2, describe the sign change at 1 of

() = (− 1)(− 2)

Solution: The quadratic () = (−1)(−2) changes sign from positive
to negative at the smaller root and from negative to positive at the larger root.
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Fig. 3.3.  −  changes sign when the graphs of  ans  cross.

Thus the sign change at 1 is from negative to positive if 1  2 and from

positive to negative if 1  2 ¤.

3.2 Estimating velocities

If the position of an object moving along a line changes linearly with time,

the object is said to be in uniform motion, and the rate of change of position

with respect to time is called the velocity . The velocity of a uniformly moving

object is a fixed number, independent of time. Most of the motion we observe in

nature is not uniform, but we still feel that there is a quantity which expresses

the rate of movement at any instant of time. This quantity, which we may call

the instantaneous velocity , will depend on the time.

To illustrate how instantaneous velocity might be estimated, let us suppose

that we are looking down upon a car  which is moving along the middle lane

of a three-lane, one-way road. Without assuming that the motion of the car is

uniform,we wish to estimate the velocity  of the car at exactly 3 o’clock.

Suppose that we have the following information (see Fig. 3.4): A car which

was moving uniformly with velocity 95 kilometers per hour was passed by

car  at 3 0 ’clock, and a car which was moving uniformly with velocity 100

kilometers per hour passed car  at 3 o’clock. We conclude that  was at least

95 kilometers per hour and at most 100 kilometers per hour. This estimate of

the velocity could be improved if we were to compare car  with more “test

cars.”
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Fig. 3.4. The velocity of car  is between 95 and 100 kilometers per hour.

In general, let the variable  represent distance along a road (measured in

kilometers from some reference point) and let  represent time (in hours from

some reference moment). Suppose that the position of two cars traveling in.

the positive direction is represented by functions 1() and 2(). Then car

1 passes car 2 at time 0 if the function 1() − 2() , which represents the

“lead” of car 1 over car 2, changes sign from negative to positive at 0. (See

Fig. ??) When this happens, we expect car 1 to have a higher velocity than

car 2 at time 0.

Since the graph representing uniform motion with velocity  is a straight

line with slope , we could estimate the velocity of a car whose motion is

nonuniform by seeing how the graph of the function giving its position crosses

straight lines with various slopes.

Example 3.7 Suppose that a moving object is at position  = () = 1
2
2 at

time . Show that its velocity at 0 = 1 is at least
1
2
.

Solution:We use a “test object” whose velocity is  = 1
2
and whose position

at time  is 1
2
. When  = 0 = 1, both objects are at  =

1
2
. When 0    1,

we have 2  , so 1
2
2  1

2
; when   1, we have 1

2
2  1

2
. It follows that

the difference 1
2
2 − 1

2
 changes sign from negative to positive at 1, so the

velocity of our moving object is at least 1
2
(see Fig. ??) ¤.
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Fig. 3.5. 1 −2 changes sign from negative to positive at 0.

Fig. 3.6. The graph of  = 1
2
 is above that of  = 1

2
2 when 0    1 and is below

when   1
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Example 3.8 Show that the velocity at 0 = 1 of the object in Example 3.7

is at most 2

Solution: First we must find a motion  = 2 +  which passes through

 = 1
2
when  = 1. We find 1

2
= 2·1 + , or b =−3

2
. Now we look at the

difference 1
2
2 − (2− 3

2
) = 1

2
2 − 2+ 3

2
= 1

2
(2 − 4+3) = 1

2
(− 3)(− 1)

The factor 1
2
( − 3) is negative near  = 1, so 1

2
( − 3)( − 1) changes sign

from positive to negative at 1. It follows that the “test” object with uniform

velocity 2 passes our moving object, so its velocity is at most 2 ¤.

3.3 Definition of the derivative

While keeping the idea of motion and velocity in mind, we will continue our

discussion simply in terms of functions and their graphs. Recall that the line

through (0 0) with slope  has the equation  − 0 = ( − 0) Solving

for  in terms of , we find that this line is the graph of the linear function

() = 0 +(− 0)

We can estimate the “slope” of a given function () at 0 by comparing ()

and (), i.e. by looking at the sign changes at 0 of

()− () = ()− [(0) +(− 0)]

for various values of . Here is a precise formulation.

Definition 3.9 Let  be a function whose domain contains an open interval

about 0. We say that the number 0 is the derivative of  at 0, provided

that:

1. For every   0, the function

()− [(0) +(− 0)]

changes sign from negative to positive at 0.

2. For every   0, the function

()− [(0) +(− 0)]

changes sign from positive to negative at 0.
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Fig. 3.7. Lines with slope different from 0 cross the curve.

If such a number 0 exists, we say that  is differentiable at 0, and we

write  ’(0) = 0. If  is differentiable at each point of its domain, we just

say that  is differentiable. The process of finding the derivative of a function

is called differentiation.

Geometrically, the definition says that lines through (0 (0)) with slope

less than  ’(0) cross the graph of  from above to below, while lines with

slope greater than  ’(0) cross from below to above. (See Fig. 3.7.)

Given  and 0, the number  ’(0) is uniquely determined if it exists. That

is, at most one number satisfies the definition. Suppose that 0 and ̃0 both

satisfied the definition, and 0 6= ̃0; say 0  ̃0. Let  = (0 + ̃0)2,

so 0    ̃0. By condition 1 for ̃0

()− [(0) +(− 0)]

changes sign from negative to positive at 0, and by condition 2 for 0, it

changes sign from positive to negative at 0. But it can’t do both! Therefore

0 = ̃0. The line through (0 (0)), whose slope is exactly  ’(0) is

pinched, together with the graph of  , between the “downcrossing” lines with

slope less than  ’(0) and the “upcrossing” lines with slope greater than  ’(0).

It is the line with slope  ’(0), then, which must be tangent to the graph of 

at (0 (0)).

We may take this as our definition of tangency. (See Fig. 3.8.)
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Fig. 3.8. The slope of the tangent line is the derivative.

Definition 3.10 Suppose that the function  is differentiable at 0. The line

 = (0) +  0(0)(− 0)

through (0 (0)) with slope 
0(0) is called the tangent line to the graph of

 at (0 (0)).

Following this definition, we sometimes refer to  0(0) as the slope of the
curve  = () at the point (0 (0)). Note that the definitions do not say

anything about how (or even whether) the tangent line itself crosses the graph

of a function. (See Problem 3.4 at the end of this chapter.)

Recalling the discussion in which we estimated the velocity of a car by seeing

which cars it passed, we can now give a mathematical definition of velocity.

Definition 3.11 Let  = () represent the position at time  of a moving

object. If  is differentiable at 0, the number 
0(0) is called the instantaneous

velocity of the object at the time 0.

More generally, we call  0(0) the rate of change of  with respect to  at
0

Example 3.12 Find the derivative of () = 2 at 0 = 3. What is the

equation of the tangent line to the parabola  = 2 at the point (3 9)?

Solution: According to the definition of the derivative - with () = 2,

0 = 3, and (0) = 9 - we must investigate the sign change at 3, for various
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Fig. 3.9. The equation of the line tangent to  = 2 at 0 = 3 is  = 6− 9.

values of , of

()− [(0) +(− 0)] = 2 − [9 +(− 3)]
= 2 − 9−(− 3)
= (+ 3)(− 3)−(− 3)
= (− 3)(+ 3−)

According to Example 3.6, with 1 = 3 and 2 =  − 3, the sign change
is: From negative to positive if  − 3  3; that is,   6. From positive to

negative if 3   − 3; that is,   6. We see that the number 0 = 6 fits

the conditions in the definition of the derivative, so  ’(3) = 6. The equation

of the tangent line at (3 9) is therefore

 = 9 + 6(− 3)

that is,  = 6− 9. (See Fig. 3.9.) ¤
Example 3.13 Let () = 3 What is  ’(0)? What is the tangent line at

(0 0)?

Solution:Wemust study the sign changes at 0 = 0 of 
3− = (2−).

If   0 the factor 2− is everywhere positive and the product (2−)

changes sign from negative to positive at 0 = 0. If   0, then (2 −) is

negative for  in (−√
√
) so the sign change of (2−) at 0 = 0 is from

positive to negative. The number 0 = 0 fits the definition of the derivative,
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Fig. 3.10. The tangent line at (0 0) to  = 3 is the  axis.

so the derivative at 0 = 0 of () = 3 is zero. The tangent line at (0 0) has

slope zero. so it is just the  axis (see Fig. 3.10). ¤

Example 3.14 Let  be a function for which we know that (3) = 2 and

 ’(3) = 5
√
8 Find the  intercept of the line which is tangent to the graph of

 at (3 2).

Solution: The equation of the tangent line at (0 (0)) is

 = (0) +  0(0)(− 0)

If 0 = 3, (3) = 2, and  0(3) = 5
√
8 we get

 = 2 +
5
√
8(− 3) = 5

√
8+ (2− 5

√
8)

The  intercept is 2− 5
√
8.

Example 3.15 Let () = || =
⎧⎨⎩

 if  ≥ 0

− if   0

(the absolute value func-

tion ). Show by a geometric argument that  is not differentiable at zero.

Solution: The graph of () = || is shown in Fig. 3.11. None of the lines
through (0 0) with slopes between −1 and 1 cross the graph at (0 0), so there
can be no 0 satisfying the definition of the derivative. ¤
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Fig. 3.11. The graph of  = || has no tangent line at (0 0)

Example 3.16 The position of a moving object at time  is 2 What is the

velocity of the object when  = 3?

Solution: The velocity is the derivative of 2 at  = 3. This derivative was

calculated in Example 3.12, it is 6.¤

3.4 The derivative as a function

The preceding examples show how derivatives may be calculated directly from

the definition. Usually, we will not use this cumbersome method; instead, we

will use differentiation rules. These rules, once derived, enable us to differen-

tiate many functions quite simply. In this Chapter, we will content ourselves

with deriving the rules for differentiating linear and quadratic functions. Gen-

eral rules will be introduced in the next chapters. The following theorem will

enable us to find the tangent line to any parabola at any point.

Theorem 3.17 (Quadratic Function Rule.) Let () = 2++, where

  and  are constants, and let 0 be any real number. Then  is differentiable

at 0, and  0(0) = 20 + 
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Fig. 3.12. Where is  differentiable ?

Proof. We must investigate the sign changes at 0 of the function

()− [(0) +(− 0)]

= 2 + + − [20 + 0 + +(− 0)]

= (2 − 20) + (− 0)−(− 0)

= (− 0)[(+ 0) + −]

The factor [(+ 0) + −] is a (possibly constant) linear function whose

value at  = 0 is (0 + 0) +  −  = 20 +  −  If   20 + ,

this factor is positive at  = 0, and being a linear function it is also positive

when  is near 0. Thus the product of [( + 0) +  − ] with ( − 0)

changes sign from negative to positive at 0. If   20 + , then the factor

[(+ 0) + −] is negative when  is near 0, so its product with (− 0)

changes sign from positive to negative at 0. Thus the number 0 = 20+ 

satisfies the definition of the derivative, and so  0(0) = 20 + 

Example 3.18 Find the derivative at 0 = −2 of () = 32 + 2− 1
Solution: Applying the quadratic function rule with  = 3  = 2  = −1,

and = -2, we find  0(−2) = 2(3)(−2) + 2 = −10
We can use the quadratic function rule to obtain quickly a fact which may

be known to you from analytic geometry. ¤

Example 3.19 Suppose that  6= 0. At which point does the parabola  =

2 + +  have a horizontal tangent line?
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Solution: The slope of the tangent line through the point (0 
2
0 + 0 +

) is 20 + . This line is horizontal when its slope is zero; that is, when

20 +  = 0, or 0 = −2. The  value here is (−2)2 + (−2) +  =

24 − 22 +  = −(24) +  The point (−2−(24) + ) is called

the vertex of the parabola  = 2 + + ¤
In Theorem 3.17 we did not require that  6= 0. When  = 0, the function

() = 2 + +  is linear, so we have the following corollary:

Corollary 3.20 ( Linear Function Rule.) If () = + , and 0 is any

real number, then  ’(0) =  In particular, if () = , a constant function,

then  ’(0) = 0 for all 0.

For instance, if () = 3+ 4, then  ’(0) = 3 for any 0;if () = 4, then

’(0) = 0 for any 0.

This corollary tells us that the rate of change of a linear function is just

the slope of its graph. Note that it does not depend on 0: the rate of change

of a linear function is constant. For a general quadratic function, though, the

derivative  ’(0) does depend upon the point 0 at which the derivative is

taken. In fact, we can consider  ’ as a new function; writing the letter 

instead of 0, we have  ’() = 2+ 

Definition 3.21 Let  be any function. We define the function  0, with do-
main equal to the set of points at which  is differentiable, by setting  0() equal
to the derivative of  at . The function  ’() is simply called the derivative

of ().

Example 3.22 What is the derivative of () = 32 − 2+ 1?
Solution: By the quadratic function rule,  ’(0) = 2 · 30 − 2 = 60 − 2

Writing  instead of 0, we find that the derivative of () = 3
2 − 2+ 1 is

 ’() = 6− 2¤
Remark 3.23 When we are dealing with functions given by specific formu-

las,we often omit the function names. For example, we could state the result

of Example 3.22 as “the derivative of 32 − 2+ 1 is 6− 2.”
Since the derivative of a function  is another function  0, we can go on

to differentiate  0 again. The result is yet another function, called the second
derivative of  and denoted by ”.

Example 3.24 Find the second derivative of () = 32 − 2+ 1.
Solution: We must differentiate  ’() = 6 − 2. This is a linear function;

applying the formula for the derivative of a linear function, we find ”() = 6.
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The second derivative of 32−2+1 is thus the constant function whose value
for every  is equal to 6.¤
If () is the position of a moving object at time , then  ’() is the velocity,

so ”() is the rate of change of velocity with respect to time. It is called “the

acceleration of the object”

We end with a remark on notation. It is not necessary to represent functions

by  and independent and dependent variables by  and ; as long as we say

what we are doing, we can use any letters we wish.

Example 3.25 Let () = 42 + 3− 2. What is ’()? What is ’(2)?

Solution: If () = 42 + 3 − 2, we know that  ’() = 8 + 3. Using

 instead of  and  instead of , we have ’() = 8 + 3. Finally, ’(2) =

8·2 + 3 = 19.¤

Example 3.26 Let () = 3+ 1. What is  ’(8)?

Solution:  ’() = 3 for all , so  ’(8) = 3.¤

Example 3.27 An apple falls from a tall tree toward the earth. After  sec-

onds, it has fallen 492 meters. What is the velocity of the apple when  = 3?

What is the acceleration?

Solution: The velocity at time  is  0(), where () = 492. We have

 0() = 2(49) = 98; at  = 3, this is 294meters per second. The acceleration
is  0() = 98 meters per second per second.¤

Example 3.28 Find the equation of the line tangent to the graph of () =

32 + 4+ 2 at the point where 0 = 1.

Solution:  ’() = 2 · 3+4 = 6+4 so  0(1) = 10. Also, (1) = 9, so the
equation of the tangent line is  = 9 + 10(− 1), or  = 10− 1. ¤

Example 3.29 For which functions () = 2 + +  is the second deriv-

ative equal to the zero function?

Solution: Let () = 2++. Then 
0
() = 2+ and the derivative

of this is 
0
() = 2. Hence 

0
() is equal to zero when  = 0 - that is, when

() is a linear function + . ¤
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3.5 Review exercises: Chapter 3

Exercise 3.1 Find the sign changes of each of the following functions:

) () = 2− 1
) () = 2 − 1
) () = 2

) () = ( − )( − 2)

Exercise 3.2 Describe the change of sign at  = 0 of the function () = 

for  = −2 0 2
Exercise 3.3 Describe the change of sign at  = 0 of the function () =

− 2 for  = −−2 0 2 1
Exercise 3.4 Sketch each of the following graphs together with its tangent

line at (0 0); a)  = 2 b)  = 3 c)  = −3 Must a tangent line to a graph
always lie on one side of the graph?

Exercise 3.5 Let () denote the angle of the sun above the horizon at time

. When does () change sign?

Exercise 3.6 Find the derivative of () = 2 at  = 4. What is the equation

of the tangent line to the parabola  = 2 at (4 16)?

Exercise 3.7 If () = 4 what is  0(0)?

Exercise 3.8 The position at time  of a moving object is 3. What is the

velocity at  = 0?

Exercise 3.9 For which value of 0 does the function in Fig. 3.12 fail to be

differentiable?
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Limits and the foundations of calculus

We have developed some of the basic theorems in calculus without reference

to limits. However limits are very important in mathematics and cannot be

ignored. They are crucial for topics such as infinite series, improper integrals,

and multivariable calculus. Historically, the concept of limit was difficult for

mathematicians and scientists to figure out. The formal definition of limits

was given by Augustin-Louis Cauchy (in 1800s). The Cauchy’s - definition

of limit is the standard used today. In this chapter we shall prove that our

approach to calculus is equivalent to the usual approach via limits.

4.1 Continuity

Naively, we think of a curve as being continuous if we can draw it “without

removing the pencil from the paper”. Let (0 0) be a point on the curve, and

draw the lines  = 1 and  = 2 with 1  0  2. If the curve is continuous,

at least a “piece” of the curve on each side of (0 0) should be between these

lines. as in Fig. 4.1. Compare this with the behavior of the discontinuous curve

in Fig. 4.2. The following definition is a precise formulation, for functions, of

this idea.

Definition 4.1 If 0 is an element of the domain  of a function  we say

that  is continuous at 0 if:

1. For each 1  (0) there is an open interval  about 0 such that, for

those  in  which also lie in , 1  ()

2. For each 2  (0) there is an open interval  about 0 such that, for

those  in  which also lie in , ()  2.

If  is continuous at every point of its domain, we simply say that  is

continuous or  is continuous on .

The property by which continuity is defined might be called the “principle of

persistence of inequalities” :  is continuous at 0 when every strict inequality

which is satisfied by (0) continues to be satisfied by () for  in some open
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Fig. 4.1. A continuous curve.

Fig. 4.2. A discontinuous curve.
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Fig. 4.3. This step function is discontinuous at 0

interval about 0 The intervals  and  in the definition may depend upon

the value of 1 and 2.

Another way to paraphrase the definition of continuity is to say that ()

is close to (0) when  is close to 0: The lines  = 1 and  = 2 in Fig. 4.1

and 4.2 provide a measure of closeness. The following example illustrates this

idea.

Theorem 4.7, which appears later in this chapter, gives an easy way to verify

that many functions are continuous. First, though, we try out the definition

on a few simple cases in the following examples.

Example 4.2 Example 4.3 Let () be the step function defined by

() =

⎧⎨⎩
0 if  ≤ 0

1 if   0

Show that  is not continuous at 0 = 0.

Solution: First sketch the graph of  (Fig. 4.3). Take 1
2
for 2. The inequality

(0)  1
2
is satisfied by  at 0 = 0, since (0) = 0, but no matter what open

interval  we take about 0, there are positive numbers  in  for which () = 1,

which is greater than 1
2
. Since it is not possible to choose  such that condition

2 in the definition of continuity is satisfied, with 0 = 0,  =
1
2
, it follows that

 is not continuous at 0. ¤
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0

−π/4 π/4

y(x) = sin(1/x)

Fig. 4.4. The graph of sin
¡
1


¢
has infinitely many wiggles in the vicinity of the origin.

Fig. 4.5. The absolute value function is continuous at 0

Example 4.4 Let () be the absolute value function () = ||. Show that
 is continuous at 0 = 0.

Solution: The graph of  is shown in Fig. 4.5. We must establish conditions

1 and 2 in the definition of continuity. First, we check condition 2. Let 2 be

such that (0) = (0) = 0  2, i.e., 2  0. We must find an open interval 

about 0 such that ()  2 for all  ∈  . From Fig. 4.5, we see that we should

try  = (−2 2). For  ≥ 0 and  ∈  , we have () =   2. For   0 and

 ∈  , we have () = −. Since   −2, we have −  2, i.e., ()  2

Thus, for all  ∈  , ()  2 For condition 1, we have 1  (0) = 0. We can

take  to be any open interval about 0, even (−∞∞), since 1  (0) ≤ ()

for all real numbers . Hence  is continuous at 0. Notice that the interval 
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Fig. 4.6. A function with a jump discontinuity

has to be chosen smaller and smaller as 2  0 is nearer and nearer to zero. (It

is accidental to this example that the interval  can be chosen independently

of 1.) ¤

Example 4.5 This is an example (see Figure 4.6) of a function with a jump

discontinuity. A function  defined in some neighborhood of 0 is discontinu-

ous at 0 if there exists   0 such that for each   0, there exists an  such

that |− 0|   and |()− (0)| ≥ .

Example 4.6 Let  be continuous at 0 and suppose that (0) 6= 0. Show

that 1() is defined on an open interval about 0.

Solution: If (0) is not zero, it is either positive or negative. Suppose first

that (0)  0. In the definition of continuity, we may set 1 = 0 in condition

1. We conclude that there is an open interval  about 0 on which 0  (),

so 1() is defined on . If (0)  0, we use condition 2 of the definition

instead to conclude that ()  0, and hence 1() is defined, for all  in

some open interval  about 0. ¤

4.2 Differentiability and continuity

If a function () is differentiable at  = 0, then the graph of  has a

tangent line at (0 (0)). Our intuition suggests that if a curve is smooth
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Fig. 4.7. The geometry needed for the proof of Theorem 4.7.

enough to have a tangent line then the curve should have no breaks-that is, a

differentiable function is continuous. The following theorem says just that.

Theorem 4.7 If the function  is differentiable at 0, then  is continuous

at 0.

Proof.We need to verify that conditions 1 and 2 of the definition of continuity

hold, under the assumption that the definition of differentiability is met. We

begin by verifying condition 2, so let 2 be any number such that (0)  2.

We shall produce an open interval about 0 such that (0)   for all  in

. Choose a positive number  such that −   0(0)   , and let − and
+ be the lines through (0 (0)) with slopes − and  . Referring to Fig.

4.7 we see that + lies below the horizontal line  = 2 for a certain distance

to the right of 0, and that the graph of  lies below + for a certain distance

to the right of 0 because + overtakes the graph of  at 0. More precisely,

the line + :  = (0) +(− 0) intersects  = 2 at

1 =
2 − (0)


+ 0  0

and (0) +( − 0)  2 if   1 (The reader should verify this.) Let

(2 2) be an interval which works for + overtaking the graph of  at 0, so

that

()  (0) +(− 0)
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for  ∈ (0 2). If  is the smaller of 1 and 2 , then

()  (0) +(− 0)  2 for 0     (4.1)

Similarly, by using the line − to the left of 0, we may find   0 such that

()  (0)−(− 0)  2 for     0 (4.2)

(The reader may wish to add the appropriate lines to Fig. 4.7.) Let  = ( ).

Then inequalities (4.1) and (4.2), together with the assumption (0)  2,

imply that

()  2 for  ∈ 

so condition 2 of the definition of continuity is verified. Condition 1 is verified

in an analogous manner. One begins with 1  (0) and uses the line + to

the left of 0 and − to the right of 0. We leave the details to the reader.

Example 4.8 Show that the function () = 2 is continuous at 0 = 4.

Solution: We know that 2 is differentiable everywhere. Theorem 4.7 im-

plies that  is continuous at 4. ¤
This method is certainly much easier than attempting to verify directly the

conditions in the definition of continuity. But be careful! As you will there

exist nondifferentiable functions which are continuous!

4.3 Limits

Let  be a function defined on some open interval containing 0, except pos-

sibly at 0 itself, and let  be a real number. There are two definitions of the

statement

lim
→0

() = 

which is read "the limit of () as  approaches 0 is ”

Condition 4.9

(1) Given any number 1  , there is an interval (1 1) containing 0 such

that 1  () if 1    1 and  6= 0.

(2) Given any number 2  , there is an interval (2 2) containing 0 such

that 2  () if 2    2 and  6= 0.

Condition 4.10 Given any positive number , there is a positive number 

such that |()− |   whenever |− 0|   and and  6= 0.
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The first person to assign mathematically rigorous meanings to these two

conditions was Augustin—Louis Cauchy (1789−1857). The - definition (Con-
dition 4.10) of limit is the standard used today.

Depending upon circumstances, one or the other of these conditions may be

easier to use1. The following theorem shows that they are interchangeable, so

either one can be used as the definition of lim→0 () = 

Theorem 4.11 For any given  0, and , condition 4.10 holds if and only

if condition 4.10 does.

Proof. Condition 4.9 implies condition 4.10. Suppose that condition 4.9

holds, and let   0 be given. To find an appropriate , we apply condition

4.9, with 1 = − and 2 = 1+. By condition 4.9, there are intervals (1 1)

and (2 2) containing 0 such that

 −   () whenever 1    1 and  6= 0

 +   () whenever 2    2 and  6= 0

Now let  be the smallest of the positive numbers 1 − 0, 0 − 1 2 − 2,

and 0 − 2 (see Fig. 4.8). Whenever

|− 0|   and  6= 0

we have

1    1 and  6= 0 (4.3)

so

 −   ()

and

2    2 and  6= 0 (4.4)

so

 +   ()

Statements (1) and (2) together say that −   ()  +  or equivalently

|()− |  , which is what was required.

Condition 4.10 implies condition 4.9. Suppose that condition 4.10 holds,

and let 1   and 2   be given. Let  be the smaller of the two positive

1Throughout this text, the expression lim→0 () =  implies two statements — the limit exists

and the limit is equal to 
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Fig. 4.8. When |− 0|   and  6= 0 |()− |  ·

numbers − 1 and 2− . By condition 4.10, there is a positive number  such
that

|()− |   whenever |− 0|   and  6= 0

Now we can verify parts (1) and (2) of condition 4.9, with 1 = 1 = 0 − 

and 2 = 2 = 0 +  If 0 −     0 +  and  6= 0, then |− 0|  

and  6= 0, so we have |()− |  ; that is,  −   ()   + . But this

implies that 1  () and ()  2 (see Fig. 4.9).

The following theorem shows that our definition of continuity can be phrased

in terms of limits.

Theorem 4.12 Let  be defined on an open interval containing 0. Then 

is continuous at 0 if and only if

1. (0) is defined,

2. lim→0 () exists

3. lim→0 () = (0)

Proof. The definition of continuity (4.1) given on page 79 is exactly condition

1 for the statement lim→0 () = (0)

Corollary 4.13 The function  is continuous at 0 if and only if, for every

positive number , there is a positive number  such that

|()− (0)|  
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Fig. 4.9. When  ∈ (0 −  0 + ) and  6= 0 1  ()  2

whenever |− 0|  .

Proof. We have simply replaced the statement lim→0 () = (0) by its

condition 2 definition. (We do not need to require that  6= 0; if  = 0

|()− (0)| = 0, which is certainly less than   0.)

Definition 4.14 (Continuity on an open interval) A function is contin-

uous on an open interval ( ) if it is continuous at each point in the interval.

A function that is continuous on the entire real line (−∞∞) , is everywhere
continuous.

Notice that  doesn’t actually have to be continuous at the endpoints  = 

or  = . For example, if () = 1, then  is continuous on the interval (0∞)
even though (0) isn’t defined. This function is also continuous on (−∞; 0),
but not on (−2; 3), since 0 lies within that interval, and  isn’t continuous

there.

Example 4.15 Using corollary 4.13 we will prove now, that () = cos() is

continuous for all  ∈ R. Let we choose an arbitrary point 0 ∈ R. We need to
prove that for all   0 exists   0 so if |− 0|   then |cos()− cos(0)| 
 But

|cos()− cos(0)| =

¯̄̄̄
−2 sin

µ
+ 0

2

¶
sin

µ
− 0

2

¶¯̄̄̄
≤ 2

¯̄̄̄
− 0

2

¯̄̄̄
∗ 1 = |− 0| 
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Fig. 4.10. A circle of radius 1 with an arc of angle .

as |sin()| ≤ || (see Fig. 4.10. Since the radius of the circle is 1, sin()

=
|opposite|
|hypotenuse| equals the length of the edge indicated.) So, if |− 0|   then

|cos()− cos(0)|   and it is enough to choose  = We proved that () =

cos() is continuous at some point 0 ∈ R. As 0 was chosen arbitrarily, we
conclude that our function is continuous for all  ∈ R. ¤

Remark 4.16 In a similar fashion we can prove that () = sin() is con-

tinuous for all  ∈ R.

Remark 4.17 Continuity of sin() and cos() will follow directly from the

differentiability of those functions.

4.4 A little game

To familiar ourselves with the concept of a limit let us consider a simple game.

Here’s how the game works. Your move consists of picking an interval on the

-axis with  in the middle. You get to draw lines parallel to the -axis through

the endpoints of your interval. Here’s an example of what your move might be

(see Figure 4.11):Notice that the endpoints of the interval are labeled as − 

and  + . So both endpoints are a distance  away from .

Anyway, the point is, you can’t tolerate any bit of the function being outside

those two horizontal lines. My move, then, is to throw away some of the func-

tion by restricting the domain. I just have to make sure that the new domain

is an interval with  at the center, and that every bit of the function remaining

lies between your lines, except possibly at  =  itself. Here’s one way I could

make my move, based on the move you just made (Figure 4.12):I could have

taken away more and it would still have been fine—as long as what’s left is
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Fig. 4.11. Your first move in the game.

Fig. 4.12. My move in the game
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Fig. 4.13. The situation after your second move

between your lines. Now it’s your move again. You have realized that my task

is harder when your lines are closer together, so this time you pick a smaller

value of . Here’s the situation after your second move:Parts of the curve are

outside the horizontal lines again, but I haven’t had my second move yet. I’m

going to throw away more of the function away from  = , like this:So once

again I was able to make a move to counter your move. When does the game

stop? Hopefully, the answer is never! If I can always move, no matter how close

together you make the lines, then it will indeed be true that lim→ () = .

We will have zoomed in and in, you pushing your lines closer together, I re-

sponding by focusing only on the part of the function close enough to  = .

On the other hand, if I ever get stuck for a move, then it’s not true that

lim→ () = . The limit might be something else, or it may not exist, but

it’s definitely not .

Example 4.18 Prove that lim→3 2 = 9

Solution: We must show, that given any positive number  we can find a

positive number  such that ¯̄
2 − 9

¯̄
  (4.5)

whenever  satisfies

0  |− 3|   (4.6)
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Fig. 4.14. Once again I was able to make a move to counter your move.

Because |− 3| occurs in (4.6), it will be helpful to rewrite (4.5) so that |− 3|
appears as a factor on the left side. Therefore, we shall rewrite (4.5) as

|+ 3| |− 3|   (4.7)

If we can somehow ensure that when  satisfies (4.6) the factor |+ 3| remains
less than some positive constant, say,

|+ 3|   (4.8)

then on choosing

 =



(4.9)

it will follow from (4.6) that

0  |− 3|  



or

0   |− 3|   (4.10)

Form (4.8) and the right-hand inequality in (4.10) we shall then have

|+ 3| |− 3|   |− 3|  

so that (4.7) will be satisfied, and the proof will be complete. We can assume

in our discussion, that  satisfies

0   ≤ 1 (4.11)
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Assume, that  satisfies (4.6). From (4.11) and the right side of (4.6) we

obtain

|− 3|   ≤ 1
so that

|− 3|  1
or equivalently

2    4

so

5  + 3  7

Therefore

|+ 3|  7
Comparing the last inequality to (4.8) suggests  = 7; and from (4.9)

 =



=



7


In summary, given   0 we choose

 = min{1 
7
}

¤

4.5 Making new limits from old ones

The Example ?? was pretty annoying. Just to show that lim→3 2 = 9, we

had to do a lot of work. Luckily it turns out that once you know a couple of

limits, you can put them together and get a whole bunch of new ones. For

example, you can add, subtract, multiply, and divide limits within reason, and

there’s also the sandwich principle. Let’s see why all this is true.

4.5.1 Sums and differences of limits

Suppose that we have two functions  and , and we know that lim→ () =

 and lim→ () = . What should happen to lim→ (() + ())? Intu-

itively, it should be equal to + . Let’s prove this using the definition. So,

we know that

lim
→

() =  and lim
→

() =

This means that if you pick   0, I can ensure that |()− |   by

restricting  close enough to . I can also ensure that |()− |   if 
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is close enough to . The degrees of closeness that I need might be different

for  and , but it doesn’t matter—I can just go close enough so that both

inequalities work. Now, if () + () is close to + , this means that the

difference between these things should be small. So we’ll need to worry about

the quantity |(() + ())− (+)|  We’ll write this as

|(()− ) + (()−)|

We can then use the triangle inequality, which says that |+ | ≤ ||+ || for
any numbers  and , as follows:

|(()− ) + (()−)| ≤ |()− |+ |()− |  +  = 2

provided that  is close enough to . This is almost good enough, except that

you wanted a tolerance of , not 2! So I have to make my move again; this

time I’ll narrow my focus so that both |()− | and |()− | are less than
2 instead of . This is no problem, since I can deal with any positive number

that you pick. Anyway, if you redo the above equation, you’ll get  on the right

instead of 2, so we have proven that I can find a little window about  = 

such that

|(()− ) + (()−)| ≤ |()− |+ |()− |  

whenever  is in my window. (You can use  if you like to describe the win-

dow better, but that doesn’t really get us anything extra.) So this proves the

following

if lim
→

() =  and lim
→

() = then lim
→

(() + ()) = +

(4.12)

That is, the limit of the sum is the sum of the limits. Another way of writing

this is

lim
→

(() + ()) = lim
→

() + lim
→

()

but here you have to be careful to check that both limits on the right exist and

are finite. If either limit doesn’t exist, the deal’s off . Both limits have to be

finite to guarantee that you can add them up. You might get lucky if they’re

not, but there’s no guarantee.

How about lim→ (()− ())? That should go to − , and it does:

if lim
→

() =  and lim
→

() = then lim
→

(()− ()) = −

The proof is almost identical to the one we just looked at, except that you need

a slightly different form of the triangle inequality: |− | ≤ ||+ ||. Actually,
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this is just the triangle inequality applied to  and −; indeed, |+ (−)| ≤
||+|−|, but of course |−| is equal to ||. I leave it to you to rewrite the above
argument but change the plus signs between () and (), and between 

and  , into minus signs.

4.5.2 Products of limits

Now we once again assume that we have two functions  and  such that

lim
→

() =  and lim
→

() =

We want to show that

lim
→

()() =  (4.13)

That is, the limit of the product is the product of the limits. Another way of

writing this is

lim
→

()() = lim
→

()× lim
→

()

again with the understanding that both limits on the right-hand side are al-

ready known to exist and be finite. To prove this, we need to show that the

difference between ()() and the (hopeful) limit  is small. Let’s con-

sider that difference ()() −  . The trick is to subtract () and add

it back on again! That is,

()()−  = ()()− () + ()− 

What does that get us? Let’s take absolute values, then use the triangle in-

equality:

|()()−  | = |()()− () + ()−  |
≤ |(()− ) ()|+ | (()−)|

We can tidy this up a little and write

|()()−  | ≤ |()− | |()|+ || |()− | 

Now it’s time to play the game. You pick your positive number  and then I get

to work. I concentrate on an interval around  =  so small that |()− |  

and |()− |  . In fact, if you pick   1 (a pretty feeble move, if you ask

me—you want  to be small!) then I’m even going to insist that |()− |  1
in that case. So we know in either case that |()− |  1, which means

that  − 1  ()   + 1 on my interval. In particular, we can see that



88 4. Limits and the foundations of calculus

|()| ≤ | | + 1. The whole point is that we have some nice inequalities on
my interval:

|()− |   |()| ≤ | |+ 1 and |()− |  

We can insert these into the inequality for |()()−  | above
|()()−  | ≤ |()− | |()|+ || |()− |

 (| |+ 1) +  || = (| |+ ||+ 1)
for  close enough to . That’s almost what I want! I was supposed to get

 on the right-hand side, but I got an extra factor of (| | + || + 1). This
is no problem—you just have to allow me to make my move again, but this

time I’ll make sure that |()− | is no more than (| | + || + 1) and
similarly for |()− |. Then when I replay all the steps,  will be replaced
by (| |+ ||+ 1), and at the very last step, the factor (| |+ ||+ 1) will
cancel out and we’ll just get our ! So we have proved the result.

By the way, it’s worth noting a special case of the above. If  is constant,

then

lim
→

() =  lim
→

() (4.14)

This is easy to see by setting () =  in our main formula above; I leave the

details to you.

4.5.3 Quotients of limits

Here we want to show that if

lim
→

() =  and lim
→

() =

then we have

lim
→

()

()
=




 (4.15)

So the limit of the quotient is the quotient of the limits. For this to work, we’d

better have  6= 0 or else we’ll be dividing by 0. Another way of writing the
above equation is

lim
→

()

()
=
lim→ ()

lim→ ()

provided that both limits exist and are finite, and that the -limit is nonzero.

Here’s how the proof goes. We want ()() to be close to  , so we con-

sider the difference. Then we’ll need to take a common denominator, leaving

us with
()

()
− 


=

()− ()

()
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Now we do a trick similar to the one we used in for products of limits: we’ll

subtract and add  to the numerator, then factor. This gives us

()

()
− 


=

()−  +  − ()

()

=
 (()− )

()
+

 ( − ())

()

=
()− 

()
−  (()−)

()


If we take absolute values and then use the triangle inequality in the form

|− | ≤ ||+ ||  we get¯̄̄̄
()

()
− 



¯̄̄̄
=

¯̄̄̄
()− 

()
−  (()−)

()

¯̄̄̄
≤

¯̄̄̄
()− 

()

¯̄̄̄
+

¯̄̄̄
 (()−)

()

¯̄̄̄


So you make your move by picking   0, and then I narrow the window

of interest around  =  so that |()− |   and |()− |   in the

little window. Now I need to be even trickier, though. You see, I know that

 −   ()   +  which means that |()|  | | − . All’s well if

this right-hand quantity | | −  is positive, but if it’s negative, it tells us

nothing since we already knew that |()| can’t be negative. So if your  is
small enough, then I don’t worry, but if it’s a little bigger, I need to narrow my

window more so that |()|  | | 2 on the window. So altogether we have
three inequalities which are true on the little interval:

|()− |   |()|  | | 2 and |()− |  

This middle inequality can be inverted to read

1

|()| 
2

| |
Putting everything together, we have¯̄̄̄

()

()
− 



¯̄̄̄


|()− |
|()| +

|| |()− |
| | |()|

 
2

| | + 
||
| |

2

| |
= 

µ
2

| | +
||
| |

2

| |
¶
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Not quite what we wanted|we have an extra factor of
³

2
| | +

||
| |

2
| |
´
, but we

know how to handle this—I just make my move again, but instead of your , I

use  divided by this extra factor.

4.5.4 The limit of a composite function

In the future we will need another important fact which concerns limit of a

composite functions. Precisely, let  and  are functions such that

lim
→

() =  and lim
→

() = ()

We will prove, that

lim
→

 (()) = 
³
lim
→

()
´
=  () (4.16)

To do that, for a given   0 we must find   0 such that

|(())− ()|   whenever 0  |− |  

Because the limit of () as →  is () we know there exists 1  0 such

that

|()− ()|   whenever 0  |− |  1

Moreover, because the limit of () as →  is  you know there exists   0

such that

|()− |  1 whenever 0  |− |  

Finally, letting  = () we have

|(())− ()|   whenever 0  |− |  

Remark 4.19 Although limit properties are stated above for two functions

only, the results hold for any finite number of functions (because of the math-

ematical induction). Moreover, the various properties can be used in combina-

tion to reformulate expressions involving limits.

Example 4.20

lim
→

(()− () + 3()) = lim
→

()− lim
→

() + 3 lim
→

()

lim
→

(()()()) = lim
→

() lim
→

() lim
→

()

lim
→

(())4 =
³
lim
→

(())
´4

 (4.17)

lim
→

 =
³
lim
→


´
= 

¤
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Example 4.21 Find the limit

lim
→3

2 − 9
− 3 

Solution: We cannot plug in the number 3 because that would yield the

meaningless expression 0
0
. Suppose, that  6= 3Then

2 − 9
− 3 =

(+ 3)(− 3)
(− 3) = + 3 as long as  6= 3

Now take a closer look at this: here we have two functions. One of them is the

original 2−9
−3  and the other is  + 3 These two functions agree everywhere

(except  = 3) and they have the same limit, as we approach the point  = 3

because it is never important in limits what happens at the point we approach.

Now we can easily find the solution lim→3 2−9
−3 = lim→3 + 3 = 6 ¤

On the basis of that example we can formulate the following theorem:

Theorem 4.22 Let  be a real number and let () = () for all  6=  in

an open interval containing  If the limit () of as  approaches  exists,

then the limit of () also exists and

lim
→

() = lim
→

()

Proof. Let  be the limit of () as → Then for each   0 there exists a

  0 such that () = () in the open intervals (−  ) and ( + ), and

|()− |   whenever 0  |− |  

Because () = () for all  for all  in the open interval other than  = 

it follows that

|()− |   whenever 0  |− |  

So, the limit of () as →  is also 

4.5.5 Sandwich principle

The sandwich principle , also known as the squeeze principle, says that if a

function  is sandwiched between two functions  and  that converge to the

same limit  as →  then  also converges to  as → 

Here’s a more precise statement of the principle. Suppose that for all  near

, we have () ≤ () ≤ (). That is, () is sandwiched (or squeezed) be-

tween () and (). Also, let’s suppose that lim→ () =  and lim→ () =
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Fig. 4.15. Sandwich principle; the values of () are forced to tend to  in the limit

as → .

 Then we can conclude that lim→ () = ; that is, all three functions

have the same limit as  → . We use this principle, because sometimes it

is easier to designate the limits (when  → ) of the function () and ()

rather than () As usual, the picture tells the story (see Figure 4.15):

The function  , shown as a solid curve in the picture, is really squeezed

between the other functions  and  in the vicinity ; the values of () are

forced to tend to  in the limit as → . (See next subsection for a proof of

the sandwich principle.)

Example 4.23 One of the most important trigonometry limits is the fact that

lim
→0

sin()


= 1 (4.18)

The graph of () =
sin()


is shown on Figure 4.16, and as expected, this

graph is not defined at  = 0. Two squeezing functions are: () = 1 and

() = cos2() Of course

lim
→0

1 = 1

and

lim
→0

cos2() = 1

We now prove that cos2() 
sin()


 1 for −
2
   

2
and  6= 0 For this,

consider the graph 4.17. You can move the blue point on the unit circle to
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Fig. 4.16. Function () =
sin()


is squished between () = 1 and () = cos2() in

the neighborhood of  = 0

change the value of . Observe that the -value of the blue point  is cos()

and the -value of the blue point is sin(). The area of the “small sector” (see

Figure 4.18) is equal to 1
2
2 where  is the radius of the circle The area of

the triangle with vertices 0 1 and  is equal to 1
2
sin() whereas the area of

the “large sector” (see Figure 4.17) is equal to 2 By comparing areas, it’s

clear that for 0    2,

1

2
 cos2() 

1

2
sin() 

1

2


Multiply through by 2,

 cos2()  sin()  

Divide through by (positive) ,

cos2() 
sin()


 1

Finally, we consider the case where, −2    0. We see that for positive 

cos(−) = cos() so cos2(−) = cos2()

and
sin(−)
− =

− sin()
− =

sin()
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Fig. 4.17. The shaded area is the “large sector”.

Fig. 4.18. The “small sector”.
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so, the previous string of inequalities still holds. Thus, for −2    2

cos2() 
sin()


 1

as needed. ¤

Example 4.24 Using the limit (4.18), we can prove the related, important

trigonometry limit

lim
→0

1− cos


= 0

Notice, that you cannot just plug in the number 0 because that would yield the

meaningless expression 0
0
 Instead we can proceed as follows:

lim
→0

µ
1− cos



¶µ
1 + cos

1 + cos

¶
= lim

→0
1− cos2 
 (1 + cos)

= lim
→0

sin2 

 (1 + cos)

= lim
→0

µ
sin



¶µ
sin

(1 + cos)

¶
= 1 · 0 = 0

¤

Remark 4.25 The sinc function (see Figure 4.19)

() =

⎧⎨⎩
sin


if  6= 0

1 if  = 0

is an important function and appears in many applications like in the study of

waves or signal processing (it is used in low pass filters). The name sinc comes

from its original latin name sinus cardinalis.

4.5.6 The sandwich principle—proof

Now it’s time to prove the sandwich principle. We start with functions  

and , such that () ≤ () ≤ () for all  close enough to . We also know

that

lim
→

() =  and lim
→

() = 

Intuitively,  is squeezed between  and  more and more, so that in the limit

as → , we should have ()→  as well. That is, we need to prove that

lim
→

() = 
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Fig. 4.19. The graph of the sinc function.

Well, you start off by picking your positive number , and then I can focus on an

interval centered at a small enough so that |()− |   and |()− |  

on the interval. I’m also going to need the inequality () ≤ () ≤ () to be

true on the interval; since that inequality might only be true when  is very

near to , I may have to shrink my original interval.

Anyway, we know that |()− |   when  is close enough to ; the

inequality can be rewritten as

−   ()  + 

Actually, we only need the right-hand inequality, ()   + ; you see, on

my little interval, we know that () ≤ (), so we also have

() ≤ ()  + 

Similarly, we know that

−   ()  + 

when  is close enough to ; this time we throw away the right-hand inequality

and use () ≤ () to get

−   () ≤ ()

Putting all this together, we have shown that when  is close to , we have

−   ()  + 
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Fig. 4.20. A move you might make and then a possible response for me.

or simply

|()− |  

That’s what we need to show our limit—we’ve proved the sandwich principle!

4.6 Other varieties of limits

Now let’s quickly look at the definitions of some other types of limits: infinite

limits, and right-hand limits, and limits at ±∞.

4.6.1 Infinite limits

Our game isn’t going to work if we want to use it to define a limit like this:

lim
→

() =∞

When you try to draw your two lines close to the limit, you’ll be completely

stuck, since the limit is supposed to be∞ instead of some finite value . So we

have to modify the rules a little bit. My move won’t change much, but yours

will. Instead of picking a little number   0 and then drawing two horizontal

lines (at height −  and + ), this time you’ll pick a large number  and

only draw in the line at height  . I still make my move by throwing away

most of the function, except for a small bit around  = ; this time, though, I

have to make sure that what’s left is always above your line. For example, the

following pictures show a move you might make and then a possible response

for me (see Figure 4.20):

Now here’s what happens if you make another move but with a larger value

of  (Figure 4.21):
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Fig. 4.21. Another move with a larger valueof 

So the idea is that this time you raise your bar higher and higher; if I can

always make a move in response, then the limit is indeed ∞. In symbols, I
need to be able to ensure that ()   whenever  is close enough to a, no

matter how big  is. So, we write

“lim→ () =∞” to indicate, that the limit fails to exist because ()
is increasing without bound, or (more precisely) for any choice of   0

there exists   0 such that ()   for all  satisfying 0  |− |  

It’s very similar to the situation when the limit is some finite number ,

except that the inequality |()− |   is replaced by ()   .

Example 4.26 Suppose that we want to show that

lim
→0

1

2
=∞

You start off by picking your number   0; then I have to make sure that

()   when  is close enough to 0. Well, suppose that I throw everything

away except for  satisfying ||  1
√
 . For such an , we have 2  1 ,

so 12   (note that we have assumed that  6= 0). That means that

()   in my interval, which means my move is valid. So for any  you

pick, I can make a valid move, and we have proved that the limit is indeed ∞.
¤

How about −∞? Everything is just reversed. You still pick a large positive
number  , but this time I need to make my move so that the function is

always below the horizontal line of height − . So here’s what the definition
looks like:

“lim→ () = −∞” means that for any choice of   0

you make, I can pick   0 such that:

()  − for all  satisfying 0  |− |  
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4.7 Limits and continuous functions

We return now to the study of continuous functions, making use of these ideas

about limits.

Theorem 4.27 (Positivity theorem for continuous functions) Suppose,

that () is continuous at 0 and (0)  0 then there exists   0 such that

()  0 whenever |− 0|  

Proof. Choose an  so that 0    (0). Since  is continuous at 0 there

exists   0 such that

|()− (0)|   whenever |− 0|  

This when combined with the previous inequality, says

0  (0)−   ()  (0) +  for |− 0|  

The two left-hand inequalities prove the theorem.

As another example of the use of limits to establish results about continuity,

the above results about limits of sums, products, and quotients imply almost

immediately the corresponding results for continuous functions:

Theorem 4.28 (Algebraic operations on continuous functions) If  and

 are continuous at 0, and ,  are constants, then the following functions

are also continuous at 0:

 +   ·  


(if (0) 6= 0)

Proof. Using the limit form of continuity (see Theorem 4.12), the three state-

ments follow immediately from the corresponding statements from the Section

4.5

For the quotient statement, we must also verify that there exists   0 such

that () 6= 0 for |− 0|   But this follows from the Positivity Theorem

4.27.

Theorem 4.28 extends immediately to intervals, because continuity is a local

property. On an interval , the sum, product, and quotient (where defined) of

continuous functions is again continuous. Continuity properties are stated

above for two functions only, but the results hold for any finite number of

functions (because of the mathematical induction).



100 4. Limits and the foundations of calculus

Fig. 4.22. At  = 3 one-sided limits exist, but are not equal.

4.8 One-sided limits and continuity on a closed interval

4.8.1 Left-hand and right-hand limits

To define a right-hand limit (denoted by lim→+ ()), we play the same

game, except this time before we start, we already throw away everything

to the left of  = . The effect is that instead of choosing an interval like

(− ; + ) when I make my move, now I just have to worry about (; + ).

Nothing to the left of a is relevant.

Similarly, for a left-hand limit (denoted by lim→− ()), only the values

of  to the left of a matter. This means that my intervals look like (− ; );

I have thrown away everything to the right of  = . This all means that

you can take any of the above definitions in boxes and change the inequality

0  |− |   to 0   −    to get the right-hand limit. To get the

left-hand limit, you change the inequality to 0  −    instead.

Example 4.29 We’ve seen that limits describe the behavior of a function near

a certain point. Think about how you would describe the behavior of () from

Figure 4.22 near  = 3:Of course, the fact that (3) = 2 is irrelevant as far

as the limiting behavior is concerned. Now, what happens when you approach

 = 3 from the left? Imagine that you’re the hiker, climbing up and down the

hill. The value of () tells you how high up you are when your horizontal

position is at . So, if you walk rightward from the left of the picture, then

when your horizontal position is close to 3, your height is close to 1. Sure,
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there’s a sheer drop when you get to  = 3, but we don’t care about this for the

moment. Everything to the right of  = 3, including  = 3 itself, is irrelevant.

So we’ve just seen that the left-hand limit of () at  = 3 is equal to 1.

On the other hand, if you are walking leftward from the right-hand side of the

picture, your height becomes close to −2 as your horizontal position gets close
to  = 3. This means that the right-hand limit of () at  = 3 is equal to -2.

Now everything to the left of  = 3 (including  = 3 itself) is irrelevant!

We can summarize our findings from above by writing

lim
→3−

() = 1 and lim
→3+

() = 1

whereas lim→3 () obviously does not exist.

As we have seen, limits don’t always exist. But here’s something important:

the regular two-sided limit at  =  exists exactly when both left-hand and

right-hand limits at  =  exist and are equal to each other! In that case, all

three limits—two-sided, left-hand, and right-hand right-hand—are the same. In

math-speak,

lim
→−

() =  and lim
→+

() = 

is the same thing as

lim
→

() = 

If the left-hand and right-hand limits are not equal, as in the case of our

function  from above, then the two-sided limit does not exist. We’d just

write

lim
→

() does not exist

When the limit does not exist

We just saw that a two-sided limit doesn’t exist when the corresponding

left-hand and right-hand limits are different. Here’s an even more dramatic

example of this. Consider the graph of () = 1 (Figure 4.23)What is

lim→0 ()? It may be a bit much to expect the two-sided limit to exist
here, so let’s first try to find the right-hand limit, lim→0+ () Looking at
the graph, it seems as though () is very large when  is positive and close to

0. It doesn’t really get close to any number in particular as  slides down to 0

from the right; it just gets larger and larger. How large? Larger than anything

you can imagine! We say that the limit is infinity, and write

lim
→0+

1


=∞



102 4. Limits and the foundations of calculus

Fig. 4.23. Function  = 1

Similarly, the left-hand limit here is −∞, since () gets arbitrarily more and
more negative as  slides upward to 0. That is,

lim
→0−

1


= −∞

The two-sided limit certainly doesn’t exist, since the left-hand and right-hand

limits are different. On the other hand, consider the function  defined by

() = 12 Both the left-hand and right-hand limits at  = 0 are ∞, so
you can say that lim→0 1

2
= ∞ as well. By the way, we now have a formal

definition of the term vertical asymptote

Definition 4.30 If () approaches infinity (or negative infinity) as  ap-

proaches  from the right or the left, then the line  =  is a vertical asymptote

of the graph of  .

Vertical (dashed) line  = 0 on Figure (4.23) is a vertical asymptote of the

graph of () = 1

Remark 4.31 If the graph of a function  has a vertical asymptote at  = 

then  is not continuous at .

Remark 4.32 It possible that even a left-hand or right-hand limit fails to

exist. For example, let’s meet the funky function  defined by () = (1)

(see Figure 4.4). The function doesn’t tend toward any one number as  goes

to 0 from the right (or from the left). There is no vertical asymptote, of course.
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Theorem 4.33 Let  and  be continuous on an open interval containing 

If () 6= 0 () = 0 and there exists an open interval containing  such that
() 6= 0 for all  6=  in the interval, then the graph of the function given by

() =
()

()

has a vertical asymptote at  = .

Proof. Consider the case for which ()  0, and there exists    such that

     implies ()  0. Then for   0 choose 1 such that

0  −   1 implies that
()

2
 () 

3

2
()

and 2 such that

0  −   2 implies that 0  () 
()

2


Now let be  the smaller of 1 and 2 Then it follows that

0  −    implies that
()

()


()

2

µ
2

()

¶
=

So, it follows that

lim
→+

()

()
=∞

and the line  =  is a vertical asymptote of the graph of  The proof in

other cases is similar.

Theorem 4.33 requires that the value of the numerator at  =  be nonzero.

If both the numerator and the denominator are 0 at  =  you obtain the

indeterminate form 00 ?? and you cannot determine the limit behavior at

 =  without further investigation, as illustrated in Example 4.34.

2
+1

+ 1 = (+ 3) (− 1) : (− 1) (+ 3) = 2 + 2− 3

Example 4.34 Determine all vertical asymptotes of the graph of

() =
2 + 2− 3

2 − 1 
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Fig. 4.24. Function () from example 4.34 has vertical asymptote at  = −1 It is
undefined when  = 1

Solution: Begin by factoring and simplifying the expression, as shown.

() =
2 + 2− 3

2 − 1
=

(+ 3)(− 1)
(+ 1)(− 1)

=
(+ 3)

(+ 1)
= 1 +

2

+ 1
for  6= 1

At all -values other than 1 the graph of () coincides with the graph of

(+ 3)(+ 1) So, you can apply Theorem 4.33 to to conclude that there is

a vertical asymptote at  = −1 as shown in Figure 4.24. Note that  = 1 is
not a vertical asymptote. ¤

4.8.2 Continuity on a Closed Interval

The concept of a one-sided limit allows you to extend the definition of continu-

ity to closed intervals. Basically, a function is continuous on a closed interval if

it is continuous in the interior of the interval and exhibits one-sided continuity

at the endpoints. This is stated formally as follows.

Definition 4.35 A function () is continuous on the closed interval [ ] if

it is continuous on the open interval ( ) and

lim
→+

= () and lim
→−

= ()
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Fig. 4.25. Continuous function on a closed interval.

The function () is continuous from the right at  and continuous from the

left at  (see Figure 4.25)

Example 4.36 Show that for all integers  ≥ 2, the function () = 
1
 is

continuous on [0∞)
Solution: let   ∈ (0∞) We use the identity2

 −  = (− )(−1 + −1 + + −2 + −1)

Putting  = 
1
 and  = 

1
 gives

|− | =
¯̄̄

1
 − 

1


¯̄̄ ¯̄̄

(−1)
 + 

(−2)
 

1
 + + 

(−1)


¯̄̄


¯̄̄

1
 − 

1


¯̄̄

(−1)


and so ¯̄̄

1
 − 

1


¯̄̄

|− |

(−1)




2 It follows from the geometric sum formula.



106 4. Limits and the foundations of calculus

Fig. 4.26. The graph of the function of () =
√
4− 2

It follows that we can arrange for
¯̄̄

1
 − 

1


¯̄̄
to be less than any given   0

by taking |− | less than  (−1)  Thus the function is continuous at every 

in (0∞)
Continuity at 0 requires a separate argument, but is easily established, for

we can make 
1
 less than any given  by choosing  less than . ¤

Remark 4.37 The result of this example is in fact a corollary of a general

result on inverse functions, to be established later. If  is odd the natural

domain of the function () = 
1
 is the whole of R, and the function is

continuous throughout its domain.

Example 4.38 Discuss the continuity of () =
√
4− 2

Solution: The domain of  is the closed interval [−2 2] At all points
in the open interval (−2 2) the continuity of follows from the Example 4.36.

Moreover, because

lim
→−2+

p
4− 2 = 0 = (−2) (continuous from the right)

and

lim
→2−

p
4− 2 = 0 = (2) (continuous from the left)

you can conclude that () is continuous on the closed interval [−2 2] as shown
in Figure 4.26. ¤

4.8.3 Limits at ∞ and −∞
There is one more type of limit that we need to investigate. We’ve concentrated

on the behavior of a function near a point  = . However sometimes it is
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important to understand how a function behaves when  gets really huge.

Another way of saying this is that we are interested in the behavior of a

function as its argument  goes to ∞. We’d like to write something like
lim
→∞ () = 

and mean that () gets really close, and stays close, to the value  when 

is large.

The game has to change a little, of course, but we already know how. In

fact we just have to adapt the methods from above. You’ll

start by picking your little number   0, establishing your tolerance interval

( −   + ); then my move will be to throw away the function to the left

of some vertical line  =  , so that all the function values to the right of the

line lie in your tolerance interval. Then you pick a smaller , and I move the

line rightward if I have to in order to lie within your new, smaller interval.

Here’s what the first couple of moves for both of us might look like (see

Figure 4.27) :

After your first move, my move ensures that all the function values to the

right of the line  =  lie in your tolerance interval. You respond by closing

in the interval, but then I just move the line to the right until I can meet your

new, more restrictive tolerance interval. Again, if I can always make a move

in response to you, then the above limit is true.

More formally, my move consists of picking N such that () is in the interval

(−  + ) whenever    (so  is to the right of the vertical line  = ).

Using absolute values, we can write this as follows:

“lim→∞ () = ” means that for any choice of   0

there exists  such that

|()− |   for all  satisfying    .

It’s worth noting that any limit as  → ∞ is necessarily a left-hand limit—

there’s nothing to the right of ∞! Anyway, there are still a couple of vari-
ations to look at. First, what does lim→∞ () = ∞? You just have to
adapt the previous definitions. In particular, you can take the above definition

and change your move to picking   0, and now instead of requiring that

|()− |  , this changes to ()   . If instead you would like to show

that lim→∞ () = −∞, you would change the inequality to ()  − .
Pretty straightforward. It’s also pretty easy to define what

lim
→−∞ () =  lim

→−∞ () =∞ lim
→−∞ () = −∞

mean. The only thing that changes from the respective case where →∞ is

that my vertical line will be at  = − , and now the function values have to
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Fig. 4.27. First and second move of the game.
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lie in your tolerance region to the left of the line instead of to the right. That

is, you just change the inequality    to   − in all the definitions.

The important thing to realize is that writing “lim→∞ () = ” indicates

that the graph of  has a right-hand horizontal asymptote at  = . There is

a similar notion for when  heads toward −∞: we write

lim
→−∞ () =

which means that () gets extremely close, and stays close, to when  gets

more and more negative (or more precisely, − gets larger and larger). This
of course corresponds to the graph of  = () having a left-hand horizontal

asymptote. You can turn these definitions around if you like and say:

“ has a right-hand horizontal asymptote at  = ”

means that lim→∞ () = 

“ has a left-hand horizontal asymptote at  =”

means that lim→−∞ () =

Of course, something like  = 2 doesn’t have any horizontal asymptotes: the

values of  just go up and up as  gets larger. In symbols, we can write this

as lim→∞ 2 =∞

It is obvious, that a given function () has 0 1 or maximally 2 horizontal

asymptotes.

Example 4.39 Looking at () = 1 (see Figure 4.23), we observe that the

·axis is a right-hand horizontal asymptote of the curve because

lim
→∞

1


= 0

and a left-hand horizontal asymptote because

lim
→−∞

1


= 0

¤

Example 4.40 Find the horizontal asymptotes of the graph of

() =
3 − 2
||3 + 3 

Solution: We calculate the limits as → ±∞.
For  ≥ 0:
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Fig. 4.28. Graph of the function () = 3−2
||3+3 and its horizontal asymptotes.

lim→∞ () = lim→∞ 3−2
||3+3 = lim→∞ 3−2

3+3
= lim→∞

1− 2

3

1+ 3

3

= 1

For  ≤ 0:
lim→−∞ () = lim→−∞ 3−2

||3+3 = lim→∞ 3−2
−3+3 = lim→∞

1− 2

3

−1+ 3

3

= −1
The horizontal asymptotes are  = −1 and  = 1. The graph is displayed

in Figure 4.28. ¤

Example 4.41 Using the Sandwich Theorem, find the horizontal asymptote

of the curve

() = 1 +
sin()




Solution: We are interested in the behavior as  → ± ∞. Since

0 ≤
¯̄̄̄
sin()



¯̄̄̄
≤
¯̄̄̄
1



¯̄̄̄
for  6= 0

and lim→±∞
¯̄
1


¯̄
= 0we have lim→±∞

¯̄̄
sin()


¯̄̄
= 0 by the Sandwich Theorem.

Hence,

lim
→±∞

µ
1 +

sin()



¶
= 1 + 0 = 1

and the line  = 1 is a left-hand and a righ-hand horizontal asymptote of the

curve. This example illustrates that a curve may cross one of its horizontal

asymptotes many times (see Figure 4.29).
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Fig. 4.29. A curve may cross one of its asymptotes infinitely often.

Example 4.42 Find the horizontal asymptotes of the curve

() =
(1 + − ||)√

2 + 1


Solution: In this case only a righ-hand horizontal asymptote exists as

lim
→−∞ () =∞ lim

→∞ () = 1

(see Figure 4.30.) ¤

Example 4.43 Find the horizontal asymptotes of the graph of

() =  cos()

Solution: As

lim
→−∞ () does not exist,

lim
→∞ () does not exist

there are no horizontal asymptotes. ¤

4.8.4 Examples of discontinuities

To understand continuity better, let’s consider some ways that a function can

fail to be continuous. Keep in mind that continuity at a point requires more
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Fig. 4.30. Only a righ-hand horizontal asymptote exists here.

than just the existence of a limit. For () to be continuous at  = , three

conditions must hold

1 lim
→

() exists 2 () exists 3 They are equal

Otherwise, () is discontinuous at  = .

If the first two conditions hold but the third fails, we say that  has a remov-

able discontinuity at  = . The function in Figure 4.31(A) has a removable

discontinuity as  = 2 because lim→2 () = 5 exists but is not equal to

function value (2) = 10

Removable discontinuities are “mild” in the following sense: We can make 

continuous at  =  by redefining (). In Figure 4.31(B), the value (2) has

been redefined as (2) = 5 and this makes  continuous at  = 2.

A “worse” type of discontinuity is a jump discontinuity, which occurs if the

one-sided limits

lim
→−

() and lim
→+

()

exist but are not equal. Figure 4.32 shows two functions with jump disconti-

nuities at  = 2. Unlike the removable case, we cannot make () continuous

by redefining ().

We say that () has an infinite discontinuity at  =  if one or both of the

one sided limits is infinite (even if () itself is not defined at  = ). Figure

4.33 illustrates three types of infinite discontinuities occurring at  = 2. Notice

that  = 2 does not belong to the domain of the function in cases (A) and

(B).
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Fig. 4.31. redefining (2).

Fig. 4.32. Jump discontinuities.

Fig. 4.33. Three types of infinite discontinuities occurring at  = 2
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We should mention that some functions have more “severe” types of dis-

continuity than those discussed above. For example, () = sin( 1

) oscillates

infinitely often between +1 and −1 as  → 0 (Figure 4.4 p. 74). Neither the

left- nor the right-hand limits exist at  = 0, so this discontinuity is not a

jump discontinuity.

4.9 The derivative as a limit of difference quotients

We recall the definition of the derivative given in Chapter 3

Definition 4.44 Let  be a function whose domain contains an open interval

about 0. We say that the number 0 is the derivative of  at 0 provided that

1. For every   0, the function

()− [(0) +(− 0)]

changes sign from negative to positive at 0.

2. For every   0, the function

()− [(0) +(− 0)]

changes sign from positive to negative at 0.

If such a number 0 exists, we say that  is differentiable at 0 and we

write

0 =  0(0)

We will now prove that our definition of the derivative coincides with the

definition found in most calculus books.

Theorem 4.45 Let  be a function whose domain contains an open interval

about 0. Then  is differentiable at 0 with derivative 0 if and only if

lim
∆→0

[(0 +∆)− (0)]

∆
(4.19)

exists and equals 0

Proof. We will use the condition 1 form of the definition of limit. Suppose

that

lim
∆→0

[(0 +∆)− (0)]

∆
= 0
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To verify that

 0(0) = 0

we must study the sign change at 0 of

() = ()− [(0) +(− 0)]

and see how it depends on . First assume that   0. Since the limit of

difference quotients in (4.19) is 0. there is an interval ( ) containing zero

such that

 
(0 +∆)− (0)

∆

whenever   ∆   ∆ 6= 0. Writing  for 0 +∆, we have

 
()− (0)

∆
(4.20)

whenever 0+     0+ ,  6= 0 - that is, whenever 0+     0+ ,

or 0    0 + 

In case 0 +     0, we have − 0  0, and so equation (4.20) can be

transformed to

(− 0)  ()− (0)

0  ()− [(0) +(− 0)]

When 0    + , we have − 0  0, so equation (4.20) becomes

(− 0)  ()− (0)

0  ()− [(0) +(− 0)]

In other words, ()−[(0)+(−0)] changes sign from negative to positive
at 0. Similarly, if   0, we can use part 2XXX of the condition 1XXX

from definition of limit to show that ()− [(0) +(− 0)] changes sign

from positive to negative at 0. This completes the proof that 
0(0) = 0.

Next we show that if  0(0) = 0, then

lim
∆→0

[(0 +∆)− (0)]

∆
= 0

This is mostly a matter of reversing the steps in the first half of the proof, with

slightly different notation. Let 1  0. To find an interval ( ) containing

zero such that

1 
[(0 +∆)− (0)]

∆
(4.21)
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whenever   ∆   ∆ 6= 0 we use the fact that
()− [(0) + 1(− 0)]

changes sign from negative to positive at 0. There is an interval (1 1) con-

taining 0 such that ()− [(0) + 1(− 0)] is negative when 1    0
and positive when 0    1. Let  = 1 −0  0 and  = 1 − 0  0. If

  ∆  0, we have at 1  0 +∆  0, and so

0  (0 +∆)− [(0) + 1∆]

1∆  (0 +∆)− (0)

1 
[(0 +∆)− (0)]

∆
(since ∆  0)

which is just equation (4.21). If 0  ∆  , we have 0  0 +∆  1, and

so

0  (0 +∆)− [(0) + 1∆]

1∆  (0 +∆)− (0)

1 
[(0 +∆)− (0)]

∆

which is equation (4.21) again.

Similarly, if 2  0, there is an interval ( ) containing zero such that

2  [(0 +∆)− (0)]∆ whenever   ∆  , ∆ 6= 0. Thus we have
shown that

lim
∆→0

[(0 +∆)− (0)]

∆
= 0

Combining Theorems (4.11) and (4.45), we can now give an - characteri-

zation of the derivative.

Corollary 4.46 Let  be defined on an open interval containing 0. Then 

is differentiable at 0 with derivative 
0(0) if and only if, for every positive

number  there is a positive number  such that¯̄̄̄
[(0 +∆)− (0)]

∆
−  0(0)

¯̄̄̄
 

whenever |∆|  0 and ∆ 6= 0.
Proof. We have just rephrased the statement

lim
∆→0

[(0 +∆)− (0)]

∆
=  0(0)

using the - definition of limit.
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Example 4.47 Find the derivative of () = 3.

Solution: We use the limit definition as follows:

lim
∆→0

[(+∆)− ()]

∆
= lim

∆→0
(+∆)3 − 3

∆

= lim
∆→0

³
3 + 32∆+ 3 (∆)2 + (∆)3

´
− 3

∆

= lim
∆→0

∆
³
32 + 3 (∆) + (∆)2

´
∆

= lim
∆→0

³
32 + 3 (∆) + (∆)2

´
= 32

That is  0() = 32 ¤

Example 4.48 (A graph with a sharp turn) The function () = |− 2|
is continuous for all real numbers. Is it differentiable at  = 2?

Solution: We will use the tangent line formula at  = 2 :

 0() = lim
→

()− ()

− 
= lim

→

|− 2|− 0
− 2 

By analyzing the 1-sided limits near 2, you see that this limit does not exist.

Hence the function is not differentiable at 2. Geometrically, the graph has a

sharp corner at 2 and is not smooth there. ¤
The definition of a tangent line to a curve does not cover the possibility of

a vertical tangent line. For vertical tangent lines, you can use the following

definition. If  is continuous at  and

lim
∆→0

(+∆)− ()

∆
=∞ or lim

∆→0
(+∆)− ()

∆
= −∞

the vertical line  =  passing through ( ()) is a vertical tangent line to

the graph of  (see Figure 4.34).

Example 4.49 (Graph with a vertical tangent line) Is the function

() = 
1
3 differentiable at the point (0 0)?

Solution:

lim
→0

()− (0)

− 0 = lim
→0


1
3 − 0


= lim
→0

1


2
3

=∞

Although the function is continuous at (0 0), it is not differentiable there. In

fact, the graph of  has a vertical tangent at this point. Recall in general that

differentiability implies continuity, but the converse is false ¤
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Fig. 4.34. The graph of  has a vertical tangent line at ( ()).

4.10 Derivative Notation

For historical and practical reasons, several notations for the derivative are

used. To see the origin of one notation, recall that the slope of the secant

line   through two points  ( ()) and (+  (+ )) on the curve

 = () is

(+ )− ()




The quantity  is the change in the -coordinates in moving from  to . A

standard notation for change is the symbol ∆ (uppercase Greek letter delta).

So, we replace  by ∆ to represent the change in . Similarly, (+)−()
is the change in , denoted ∆ (Figure 4.35). Therefore, the slope of   is

sec =
(+∆)− ()

∆
=
∆

∆


By letting ∆→ 0 the slope of the tangent line at ( ()) is

0 =  0() = lim
∆→0

(+∆)− ()

∆
= lim

∆→0
∆

∆
=
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Fig. 4.35. As ∆ → 0  approaches  , the secant lines approach the tangent line

and sec → 0

The new notation3 for the derivative is 

; it reminds us that  0() is the limit

of ∆
∆

as ∆→ 0 It is read the derivative of  with respect to  or . It

does not mean  divided by , but it is a reminder of the limit of ∆
∆
.

In addition to the notation  0() and 

, other common ways of writing the

derivative include









(()) (()) and 0()

Each of the following notations represents the derivative of  evaluated at .

 0() 0()



|= and




|=

4.11 Evaluating limits analytically

In Section 4.3, you learned that the limit of () as  approaches  does not

depend on the value of  at  It may happen, however, that the limit is

precisely () In such cases, the limit can be evaluated by direct substitution.

3The derivative notation  was introduced by Gottfried Wilhelm von Leibniz (1646− 1716),
one of the coinventors of calculus. His notation is used today in its original form.
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That is,

lim
→

() = ()

As we know such well-behaved functions are continuous at 

Because polynomials are differentiable (so continuous) we can state the fol-

lowing (see Subsection 4.5.3):

Theorem 4.50 If  is a polynomial function and  is a real number, then

lim
→

() = ()

If  is a rational function given by () = ()() and  is a real number

such that () 6= 0 then

lim
→

() = () =
()

()


Example 4.51 Find the limit:

lim
→1

3 + 22 − + 6

+ 1


Solution: Because the denominator is not 0 when you can apply Theorem

4.50 to obtain

lim
→1

3 + 22 − + 6

+ 1
=
13 + 2 · 12 − 1 + 6

1 + 1
= 4

¤
Polynomial functions and rational functions are two of the three basic types

of algebraic functions. The following theorem deals with the limit of the third

type of algebraic function–one that involves a radical. A for a proof of this

theorem follows from the differentiability of the functions of that kind (See

xxx).

Theorem 4.52 Let  be a positive integer. The following limit is valid for all

 if  is odd, and is valid for   0 if  is even.

lim
→


√
 = 

√


Having in mind Subsection ?? we can easily compute limits of some com-

posite functions.

Example 4.53 a) Because lim→0
¡
4 + 2

¢
= 04 + 2 = 2 and lim→2

√
 =√

2 it follows that

lim
→0

p
4 + 2 =

√
2
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b) Because lim→3
¡
22 − 10¢ = 2 · 32 − 10 = 8 and lim→8 3

√
 = 2 it follows

that

lim
→3

3
p
22 − 10 = 2

¤

You have seen that the limits of many algebraic functions can be evaluated

by direct substitution. The six basic trigonometric functions also exhibit this

desirable quality, as shown in the next theorem (presented without proof, as

it follows from the differentiability of these functions).

Theorem 4.54 Let be a real number in the domain of the given trigonometric

function. Then

a) sin = sin  b) lim→ cos = cos 

c) lim→ tan = tan  d) lim→ cot = cot 

e) lim→ sec = sec  f) lim→ csc = csc 

(4.22)

Example 4.55 (Limits of trigonometric functions)

a) lim→0 tan = tan(0) = 0

b) lim→2

¡
2 sin

¢
=
¡
lim→2 

2
¢ ¡
lim→2 sin

¢
= 1

4
2

c) lim→0
¡
cos
¡
2
¢¢
= 1

4.12 A strategy for finding limits

On the previous pages, you studied several types of functions whose limits

can be evaluated by direct substitution. This knowledge, together with the

following theorem, can be used to develop a strategy for finding limits.

Theorem 4.56 Let  be a real number and let () = () for all  6=  in

an open interval containing  If the limit of () as approaches  exists, then

the limit of () also exists and

lim
→

() = lim
→

() (4.23)

Proof. Let  be the limit of () as →  Then, for each   0 there exists

a   0 such that () = () in the open intervals (−  ) and ( + ) and

|()− |   whenever 0  |− |  
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Because () = () for all  in the open interval other than  =  it follows

that |()− |   whenever 0  |− |   So, the limit of () as → 

is also 

A STRATEGY FOR FINDING LIMITS

1. Learn to recognize which limits can be evaluated by direct substitution.

2. If the limit of () as  approaches  cannot be evaluated by direct

substitution try to find a function () that agrees with  for all other

than  = 

[Choose () such that the limit of () can be evaluated by direct

substitution.]

3. Apply Theorem 4.56 to conclude analytically that

lim→ () = lim→ () = ()

4. Use a graph or table to reinforce your conclusion.

Example 4.57 Find the limit:

lim
→1

3 − 1
− 1 

Solution: Although you are taking the limit of a rational function, you

cannot apply Theorem 4.50 because the limit of the denominator is 0. Because

the limit of the numerator is also 0, the numerator and denominator have a

common factor of (− 1)  So, for all  6= 1 you can divide out this factor to
obtain

() =
3 − 1
− 1 =

(− 1) ¡+ 2 + 1
¢

− 1 =
¡
2 + + 1

¢
= () for  6= 1

So, for all -values other than  = 1 the functions  and  agree, as shown

in Figure 4.36-4.37. Because exists, you can apply Theorem 4.56 to conclude

that  and  have the same limit at  = 1 and

lim
→1

3 − 1
− 1 =

¡
12 + 1 + 1

¢
= 3 ¤

Example 4.58 (Rationalizing technique) Find the limit:

lim
→0

√
+ 1− 1
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Fig. 4.36. The first function for example 4.57.

Fig. 4.37. The second function for example 4.57.
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Solution: By direct substitution, you obtain the indeterminate form 00

In this case, you can rewrite the fraction by rationalizing the numerator.

√
+ 1− 1


=

µ√
+ 1− 1



¶ ¡√
+ 1 + 1

¢¡√
+ 1 + 1

¢
=

1√
+ 1 + 1

for  6= 0

Now, using Theorem 4.56, you can evaluate the limit as shown.

lim
→0

1√
+ 1 + 1

= lim
→0

1√
+ 1 + 1

=
1

1 + 1
=
1

2
 ¤

As it was said (Section 4.5.5) when it is difficult to find the limit of a function

directly, it is sometimes possible to obtain the limit indirectly by "squeezing"

the function between the simpler functions whose limits are known.

Example 4.59 (Application of the Sandwich Principle)

Use the Sandwich Principle to evaluate the limit

lim
→0

2 sin2
1




Solution: If  6= 0, we can write

0 ≤ sin2 1

≤ 1

Multiplying through by 2 yields

0 ≤ 2 sin2
1


≤ 2 if  6= 0

But

lim
→0

0 = lim
→0

2 = 0

so by the Sandwich Principle

lim
→0

2 sin2
1


= 0 ¤

Example 4.60 (A Limit involving a trigonometric function) Find

lim
→0

sin 3

sin 5
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Solution: Direct substitution yields the indeterminate form To solve this

problem, you can write

lim
→0

sin 3

sin 5
= lim

→0

sin 3


sin 5



= lim
→0

3
sin 3

3

5
sin 5

5

=
3 lim→0

sin 3

3

5 lim→0
sin 5

5

=
3

5


¤

Example 4.61 (Divide by ) Find

lim
→∞

(2+ 1)

(3+ 1)


Solution:

lim
→∞

(2+ 1)

(3+ 1)
= lim

→∞

¡
2 + 1



¢¡
3 + 1



¢ = 2

3
 ¤

4.13 Review exercises: Chapter 4

 ∗ 

Exercise 4.1 Let () be the step function defined by

() =

½
= −1 if   0

= 2 if  ≥ 0
Show that () is discontinuous at 0.

Exercise 4.2 Show that, for any constants  and , the linear function () =

+  is continuous at 0 = 2.

Exercise 4.3 Let () be the function defined by

() =

⎧⎨⎩
= 2 + 1 if   1

? if 1 ≤  ≤ 3
= − 6 if 3  

How can you define () on the interval [1 3] in order to make (−∞∞)? (A
geometric argument will suffice.)

Exercise 4.4 Let () be defined by () = (2 − 1)(− 1) for  6= 1. How
should you define (1) to make the resulting function continuous? [HINT: Plot

a graph of () for  near 1 by factoring the numerator.]
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Exercise 4.5 Let () be defined by () = 1 for  6= 0. Is there any way
to define (0) so that the resulting function will be continuous?

Exercise 4.6 Prove from the definition that the function () = 2 + 1 is

continuous at 0.

 ∗ 

Exercise 4.7 Prove that () = (2 − 1)(3 + 3) is continuous at  = 1.
Exercise 4.8 Is the converse of Theorem 4.7 true; i.e., is a function which

is continuous at 0 necessarily differentiable there? Prove or give an example.

Exercise 4.9 Prove that there is a number   0 such that 3 + 82 +  

11000 if 0    .

Exercise 4.10 Let () be. continuous at 0 and  a constant. Prove that

() + is continuous at 0.

Exercise 4.11 Why can’t we ask whether the function (3 − 1)(2 − 1) is
continuous at 1?

Exercise 4.12 Let

() =
1


+

2 − 1


Can you define (0) so that the resulting function is continuous at all ?

Exercise 4.13 Find a function which is continuous on the whole real line,

and which is differentiable for all  except 1 2 and 3. (A sketch will do.)

Exercise 4.14 a) Prove that if ()  1 for all  in  and ()  2 for all

 in  , then ( + )()  1 + 2 for all  in  .

b) Prove that, if  and  are continuous at 0, so is  + .

Exercise 4.15 Let  be defined in an open interval about 0. Suppose that

() = (0) + ( − 0)(), where  is continuous at 0. Prove that  is

differentiable at 0 and that 
0(0) = (0). [HINT: Prove that (−0)(()−

(0)) vanishes rapidly at 0.]

 ∗ 

Exercise 4.16 Using the fact that the function () = tan is continuous,

show that there is a number   0 such that |tan− 1|  0001 whenever

|− 4|  .
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Exercise 4.17 Show that there is a positive number  such that¯̄̄̄
− 4
+ 4

− 1
3

¯̄̄̄
 10−6

whenever |− 8|  ) .

Exercise 4.18 Prove that limits are unique by using the definition.

Exercise 4.19 Which of the following functions are continuous at 0?

a) () =  sin
1


  6= 0 (0) = 0

b) () =
1


sin

1


  6= 0 (0) = 0

c) () = 2 sin  6= 0 (0) = 0

 Sec. 4.9 

Exercise 4.20 If  is differentiable at 0, what is

lim
→0

[()− (0)](− 0)?

Exercise 4.21 Let  be defined near 0, and define the function (∆) by

(∆) =

⎧⎨⎩
(0+∆)−(0)

∆
∆ 6= 0

0 ∆ = 0

where 0 is some number. Show that 
0(0) = 0 if and only if  is continuous

at 0.

Exercise 4.22 Find lim→2(2 + 4+ 3− 15)(− 2).
Exercise 4.23

a) Suppose that  0(0) = 0(0) 6= 0 Find lim→0

()− (0)

()− (0)


b) Find lim→1
23 − 2
32 − 3 

c) Find lim→1
 − 1
 − 1 
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Exercise 4.24 Evaluate lim→0

√
1− 2 − 1



a) By recognizing the limit to be a derivative.

b) By rationalizing.

Exercise 4.25 Evaluate the following limit by recognizing the limit to be a

derivative:

lim
→

4

sin()− ¡√22¢
− (4) 

 ∗ 

Exercise 4.26 Find

lim
→−4

(+ 3)2014

Answer: 1

Exercise 4.27 Find

lim
→1

¡
3 − 32 + 5− 3¢

(− 1) 

Answer: 2

Exercise 4.28 Find

lim
→√3

¡
−√3¢
(2 − 3) 

Answer: 1
6

√
3

Exercise 4.29 Find

lim
→3

(− 1)
(+ 1)



Answer: 1
2


Exercise 4.30 Find

lim
→2

¡
2 − 5+ 6¢
(2 − 6+ 8)

Answer: 1
2


Exercise 4.31 Find

lim
→0

³
125 + 75+ 15 ()2 + ()3 − 125

´


Answer: 75.
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Exercise 4.32 Find

lim
→0

√
2 + −√2




Answer: 1
4

√
2

Exercise 4.33 Find

lim
→0

1
+4
− 1

4




Answer: − 1
16


Exercise 4.34 Find

lim
→0

tan2 




Answer: 0

Exercise 4.35 Find

lim
→0

cos  tan 




Answer: 1

Exercise 4.36 Find

lim
→4

1− tan
sin− cos

Answer: −√2
Exercise 4.37 Find

lim
→0

sin

13


Answer: 0

Exercise 4.38 Find

lim
→0

sec− 1
2



Answer: 1
2

Exercise 4.39 Find

lim
→4

4− 

5−√2 + 9 

Answer: 5
4


Exercise 4.40 Find

lim
→∞

3

r
3+ 5

6− 8 

Answer: 3

q
1
2
≈ 0793 7
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Exercise 4.41 Find

lim
→−∞

√
2 + 2

3− 6 

Answer: −1
3


Exercise 4.42 Find

lim
→0

(−2 + )2 − (−2)2




Answer: −4

Exercise 4.43 Find lim→3 () for

() =

⎧⎨⎩
2 − 5  ≤ 3
√
+ 13   3

Exercise 4.44 Using the Sandwich Theorem show that

a) lim→0  sin 1 = 0

b) lim→0 2 cos 1
2
= 0

Exercise 4.45 A prototype function for studying limits is the sinc function

(see p. 95). Answer following questions:

1. Does the function
cos


have a limit at → 0?

Answer: Undefined.

2. Does the function
sin(2)

2
have a limit at → 0?

Answer: 1.

3. Does the function
sin(2)


have a limit at → 0?

Answer: 0.

4. Does the function
sin()

2
have a limit at → 0?

Answer: Undefined.

5. Does the function


sin
have a limit at → 0?

Answer: 1.
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6. Does the function
sin()

|| have a limit at → 0?

Answer: Undefined.

Exercise 4.46 For the following functions, determine the points, where f is

not continuous.

a) sinc() + 1 cos()

b) sin(tan())

c) () = cot(2− )

d) sign()

e)
2 + 5+ 4

− 3 

f)


sin()


State which kind of discontinuity appears.

Solution:

a) continuous everywhere except at  = 2 −  2 2 +   Note that

sinc() is considered continuous since we defined it to be 1 at  = 0 by

the fundamental theoremof trigonometry.

b) same answer as in a). It is the tan() function which is discontinuous at

2 + .

c)  = 2 + .

d) This function has a discontinuity at  = 0. There is no way, we can fix the

pole discontinuity there.

e) This function has a pole at  = 3. There is no way we can fix the discon-

tinuity at this point.

f) This function is discontinuous at . We can fix this discontinuity.
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5

Benefits of continuity

Knowing that a function is continuous brings some benefits. We’re going to

look at two such benefits and state two key theorems about continuous func-

tions on a closed interval. The first is called the intermediate value theorem,

or   for short. The second is usually called max-min theorem (or extreme

value theorem). Both of them are very important not only for theoretical but

also for applied mathematics.

5.1 The intermediate value theorem (  )

A function which is continuous on an interval does not “skip” any values,

and thus its graph is an “unbroken curve.” There are no “holes” in it and no

“jumps.” This idea is expressed coherently by the intermediate-value theorem.

Figure 5.1 shows the graph of a function that is continuous on the closed

interval [ ]. The figure suggests that if we draw any horizontal line  = ,

where  is between ()and (), then that line will cross the curve  = () at

least once over the interval [ ]. Stated in numerical terms, if  is continuous

on [ ], then the function  must take on every value  between () and

() at least once as  varies from  to . For example, the polynomial () =

5−+3 has a value of 3 at  = 1 and a value of 33 at  = 2. Thus, it follows
from the continuity of  that the equation 5 −  + 3 =  has at least one

solution in the interval [1 2] for every value of  between 3 and 33. This idea

is stated more precisely in the following theorem.

Theorem 5.1 (Intermediate-value theorem) If  is continuous on a closed

interval [ ] and  is any number between () and (), inclusive, then there

is at least one number  in the interval [ ] such that () = .

Although this theorem is intuitively obvious, its proof depends on a mathe-

matically precise development of the real number system, which is beyond the

scope of this text.

It’s a small step from the intermediate-value theorem to the following ob-

servation:

“continuous functions map intervals onto intervals.”
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Fig. 5.1. The intermediate value theorem says, that there exists at least one number

 between  and  at which () = 

5.2 Bisection method

Definition 5.2 The function () has a root at  =  if () = 0.

A variety of problems can be reduced to solving an equation () = 0 for

its roots. Sometimes it is possible to solve for the roots exactly using algebra,

but often this is not possible and one must settle for decimal approximations

of the roots. One procedure for approximating roots is based on the following

consequence of the intermediate-value theorem.

Theorem 5.3 If  is continuous on [ ], and if () and () are nonzero

and have opposite signs, then there is at least one solution of the equation

() = 0 in the interval ( ).

Proof. Since () and () have opposite signs, 0 is between () and ().

Thus, by the intermediate-value theorem there is at least one number  in the

interval [ ] such that () = 0. However, () and () are nonzero, so 

must lie in the interval ( ), which completes the proof.

If  is a continuous function, then there will be at least one root: an 

between  and  for which () = 0. This fact is summarized in the following

corollary of the intermediate value theorem 5.1:

Theorem 5.4 Let  be a continuous function on [ ], satisfying ()() 

0. Then  has a root between  and , that is, there exists a number  satisfying

     and () = 0.
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Using Theorem 5.4 many times consecutively we can construct the following

procedure.

Bisection method: Assume  is continuous. Suppose that () and ()

have opposite signs, so that  has a zero in ( ). Then  has a zero in

[ ] or [ ], where  = ( + )2 is the midpoint of [ ]. To determine

which, compute (). A zero lies in ( ) if () and () have opposite signs

and in ( ) if () and () have opposite signs. Continuing the process, we

can locate a zero with arbitrary accuracy. This process can be presented as a

pseudocode in the following form:

Algorithm 5.5 (Bisection method) Given initial interval [ ] such that

 is a continuous function on [ ], satisfying ()()  0

while (− )2  

 = (+ )2

if () = 0, stop, end

if ()()  0

 = 

else

 = 

end

end

Example 5.6 Show that () = cos has a zero in (05 2). Then locate the

zero more accurately using the bisection method.

Solution: Using a calculator, we find that (05) and (2) have opposite

signs: (05) ≈ 0877 58  0, (2) ≈ −0416 15  0Theorem 5.3 guarantees

that () = 0 has a solution in (05 2) (Figure 5.2).We can locate a zero more

accurately by dividing [05 2] into two intervals [05 125] and [125 2].

One of these must contain a zero of (). To determine which, we evaluate

() at the midpoint  = 125. A calculator gives (125) ≈ 0315 32  0, and
since (05)  0, we see that () takes on opposite signs at the endpoints

of [125 2]. Therefore, (125 2) must contain a zero. We discard [05 125]

because both (05) and (125) are positive. (Figure 5.3).

The Bisection Method consists of continuing this process until we narrow

down the location of the zero to the desired accuracy. In the Figure 5.4, the

process is carried out five times:

We conclude that () has a zero  satisfying 153125    1625. The

bisection method can be continued to locate the root with any degree of ac-

curacy. The exact solution for this problem is equal to 2 ≈ 15708 ¤
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Fig. 5.2. Iteration step 1

Fig. 5.3. Iteration step 2
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Fig. 5.4. Iteration step 5

5.3 Max-min theorem

Let’s move on to the second benefit of knowing that a function is continuous.

Suppose we have a function  which we know is continuous on the closed

interval [ ]. (It’s very important that the interval is closed at both ends.)

That means that we put our pen down at the point ( ()) and draw a curve

that ends up at ( ()) without taking our pen off the paper. The question

is, how high can we go? In other words, is there any limit to how high up this

curve could go? The answer is yes: there must be a highest point, although

the curve could reach that height multiple times.

In symbols, let’s say that the function  defined on the interval [ ] has

a maximum1 at  =  if () is the highest value of  on the whole interval

[ ]. That is, () ≥ () for all  in the interval. The idea that I’ve been

driving at is that a continuous function on [ ] has amaximum in the interval

[ ]. The same is true for the limbo question, “how low can you go?” We’ll

say that  has a minimum2 at  =  if () is the lowest value of  on the

1Also called “absolute maximum” or “global maximum”.
2Also called “absolute minimum” or “global minimum”
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Fig. 5.5. A horizontal line moves down, seeking the minimum of a continuous function.

The max-min guarantees that there is a last value where you can stop the moving

line, keeping it in contact with the graph.

whole interval; that is, that () ≤ () for all  in [ ]. Once again, any

continuous function on the interval [ ] has a minimum in that interval.

Alternatively, let us look at the graph of  and imagine a line parallel to the

-axis slid vertically upward until it just touches the graph of  at some last

point of intersection, which is the maximum. Similarly, slide a line parallel to

the -axis vertically downward. The last point of intersection with the graph

of  is the minimum value of  (Fig. 5.5).

These facts form a theorem, sometimes known as the max-min theorem (or

extreme value theorem), which can be stated as follows:

Theorem 5.7 (Max-min) If  is a continuous function on a closed interval

[ ], then  takes on both a maximum value and a minimum value at some

points in [ ].

One consequence of the extreme value theorem is that every function that

is continuous on a closed interval is bounded. Although the extreme value

theorem does not tell us how or where to find the bounds, it is still very

useful. Figure 5.6 presents an example of continuous function on [ ] and

their maxima and minima (these are the plurals of maximum and minimum,

respectively.)

Why does the function  need to be continuous? And why can’t it be

an open interval, like ( )? The following diagrams show some potential

problems:
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Fig. 5.6. If the function  is continuous over the closed interval [ ], then there is at

least one maximum value (green) and one minimum value (red) of  in that interval

(here  is the purple endpoint, and  is the orange endpoint.)

In the first (Figure 5.7), the function  has an asymptote in the middle

of the interval [ ], which certainly creates a discontinuity. The function

has no maximum value—it just keeps going up and up on the left side of the

asymptote. Similarly, it has no minimum value either, since it just plummets

way down on the right side of the asymptote.

The second diagram (Figure 5.8) involves a more subtle situation. Here

the function is only continuous on the open interval ( ). It clearly has a

minimum at  = , but what is the maximum of this function? You might

think that it occurs at  = , but think again. The function isn’t even defined

at  = ! So it can’t have a maximum there. If the function has a maximum,

it must be somewhere near . In fact, you’d like it to be the number less than

 which is closest to . Unfortunately, there is no such number! Whatever you

think the closest number is, you can always take the average of this number

and  to get an even closer number. So there is no maximum; this illustrates

that the interval of continuity has to be closed in order to guarantee that the

max-min theorem works.

Of course, the conclusion of the theorem could still be true even if the

interval isn’t closed. For example, the function in the third diagram (Figure

5.9) is only continuous on the open interval ( ), but it still has a maximum

at  =  and a minimum at  = . This was just a lucky accident: you can

only use the theorem to guarantee the existence of a maximum and minimum
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Fig. 5.7. The function has no maximum value—it just keeps going up and up on the

left side of the asymptote.

Fig. 5.8. There is no maximum in an interval [; ]
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Fig. 5.9. A lucky accident: extrema exist in an open interval ( )

in an interval [ ] if you know the function is continuous on the entire closed

interval.

Now let’s prove the max-min Theorem, using a the method of successive

bisection.

Proof. The first thing we want to show is that you can plonk down some

horizontal line at  =  , say, such that the function values () all lie below

that line. If you couldn’t do that, then the function would somehow grow bigger

and bigger somewhere inside [ ], and it wouldn’t have a maximum. So, let’s

suppose you can’t draw such a line (Figure 5.5). Then for every positive integer

 , there’s some point  in [ ] such that () is above the line  =  .

That is, we have found some points  such that ( )   for every  .

Let’s mark them on the -axis with an .

Now, where are these marked points? There are infinitely many. So if we

chop the interval [ ] in half to get two new closed intervals, one of them

muststill have infinitely many points from . Perhaps they both do, but they

can’t both have finitely many marked points or else the total would be finite.

Let’s focus on the half of the original interval that has infinitely many

marked points; if they both do, choose your favorite one (it doesn’t matter).

Now repeat the exercise with the new, smaller interval: chop it in half. One of

the halves must have infinitely many marked points. Continue doing this for

as long as you like, and you will get a collection of intervals which get smaller

and smaller, all nested inside each other, and each of which has infinitely many

marked points.
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Intuitively, there has to be some real number which is inside every single

one of these intervals3. Let’s call the number . What is ()? We can use

thecontinuity of  to get some idea of what it should be. Indeed, we know that

lim
→

() = ()

So if you pick your  to be 1, for example, then I should be able to find an

interval ( −   + ) so that |()− ()|  1 for all  in the interval. The

problem is that the interval ( −   + ) contains infinitely many marked

points! This is because eventually one of the little nested intervals that we

chose will lie within ( −   + ), no matter how small is. This is a real

problem: we are supposed to have all these marked points inside our interval

(−  + ), but when you take  of any of them, you get a number between

() − 1 and () + 1. So, no matter what () is, we’re going to get in

trouble: some of the marked points are going to have function values which

are much bigger than () + 1. The whole thing is out of control. So we were

wrong about not being able to draw in a line like  =  which had the whole

function beneath it!

We’re still not done. We have this line  =  which lies above the graph of

 = () on [ ], but now we need to move it down until it hits the graph

in order to find the maximum. So, let’s pick  as small as possible so that

() ≤  for all  in [ ]. (We have used completeness once again.) Now

we need to show that  = () for some . To do this, we’re going to repeat

the same trick as we did above with marked points, except this time they’ll be

circled. Pick a positive integer ; we must be able to find some number  in

[ ] such that ()   − 1. If not, then we should have drawn our line
at  =  − 1 (or even lower) instead of  =  . So there is such a , and

there’s one for every positive integer . Circle all of these points. There are

infinitely many of them, and when you apply  to them, the resulting values

get closer and closer|arbitrarily close, in fact—to  . (None of the values canbe
bigger than  because () ≤  for all !) Now all we have to do is keep

bisecting the interval [ ] over and over again, such that each little interval

has infinitely many circled points in it. As before, there is a number  in all the

intervals. This number is really surrounded by a fog of circled points. What

is ()? It can’t be more than  , but maybe it can be less than  . Let’s

suppose that () = , where    , and let’s set  = ( −)2. Since 

is continuous, we really need

lim
→

() = () =

3Again, one needs to use the completeness property of the real line to show this. Actually, there

has to be exactly one such number|can you see why?
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You have your , and so I need to find an interval (−  + ) so that ()

lies in (− +) for  in my interval. The problem is that+ = −,
and also that there are infinitely many circled points lying in (−  + ), no

matter how I choose   0. Some of them might have function values lying in

( −   + ), but since the function values get closer to  , most of them

won’t. So I can’t make my move. The only way out is that () =  after

all. This means that  is a maximum, and we’re done! To get the minimum

version of the theorem, just reapply the theorem to () = −(). After all,
if  is a maximum for , then it is a minimum for  .

This theorem shows that if  is continuous on [ ], then it takes on both

a maximum value and a minimum value at some points in [ ]. Hence, by

the intermediate-value theorem (as it was said), the range of  is the closed

interval between its minimum and its value maximum value.

5.4 Review exercises: Chapter
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How to solve differentiation problems

Calculating the derivative of

() =
2 + + 1

3 − 1 or () =
¡
2 + + 1

¢ ¡
3 − 1¢

by forming the appropriate difference quotient

(+ )− ()



and then taking the limit as  tends to 0 is somewhat laborious. Here we

derive some general formulas that enable us to calculate such derivatives quite

quickly and easily.

6.1 General formulas for finding derivatives

6.1.1 Derivatives of sums and scalar multiples

It’s easy to deal with a constant multiple of a function: you just multiply by

the constant after you differentiate. For example, we know the derivative of

2 is 2; so the derivative of 72 is 7 times 2, or 14.

Theorem 6.1 (Constant multiple rule) If  is differentiable at  and  is

any real number, then  is also differentiable at  and

()0() =  0() (6.1)

Proof.

()0() = lim
→0

(+ )− ()



= lim
→0


(+ )− ()



=  lim
→0

(+ )− ()



=  0()

As a constant factor can be moved through a limit sign.
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Theorem 6.2 (Sum and difference rules) If  and  are differentiable at

, then so are  +  and  −  and

( + )0 () =  0() + 0() (6.2)

( − )0 () =  0()− 0() (6.3)

Proof.

( + )0 () = lim
→0

((+ ) + (+ ))− (() + ())



= lim
→0

((+ )− ()) + ((+ )− ())



= lim
→0

(+ )− ()


+ lim

→0
(+ )− ()



=  0() + 0()

because limit of a sum is the sum of the limits. Formula (6.3) can be proved in

a similar manner or, alternatively, by writing ()− () as () + (−1)()
and then applying Formulas (6.2) and (6.1).

You may find it useful to put these formulas into words. According to The-

orem 6.2,

“the derivative of a sum is the sum of the derivatives”,

“the derivative of a difference is the difference of the derivatives”,

and (Theorem 6.1)

“the derivative of a scalar multiple is the scalar multiple of the derivative.”

These results can be extended by induction to any finite collection of func-

tions: if 1 2   are differentiable at , and 1 2   are numbers,

then the linear combination 11 + 22 +  is differentiable at  and

(11 + 22 + )
0 () = 1

0
1() + 2

0
2() + + 

0
() (6.4)

So,

“the derivative of a linear combination is the linear combination of the

derivatives.”
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6.1.2 Derivatives of products and quotiens

Suppose we know the derivatives of () and () and want to calculate the

derivative of the product, ()(). We start by looking at an example. Let

() =  and () = 2 Then

()() = 2 = 3

so the derivative of the product is 32 Notice that the derivative of the product

is not equal to the product of the derivatives, since  0() = 1 and 0() = 2,
so  0()0() = (1)(2) = 2. In general, we have the following rule:

Theorem 6.3 (The product rule) If  and  are differentiable at , then

so is their product, and

( ·)0() = ()0() + () 0() (6.5)

In words:

“the derivative of a product is the first function times the derivative of the

second plus the second function times the derivative of the first.”

Proof. We form the difference quotient

( ·)(+ )− ( ·)()


=
(+ )(+ )− ()()



=
(+ )(+ )− (+ )() + (+ )()− ()()



and rewrite it as

(+ )

∙
(+ )− ()



¸
+ ()

∙
(+ )− ()



¸


(Here we have added and subtracted (+ )() in the numerator and then

regrouped the terms so as to display the difference quotients for  and .)

Since  is differentiable at , we know that  is continuous at  (Theorem 4.7)

and thus

lim
→0

(+ ) = ()

Since

lim
→0

(+ )− ()


= 0() and lim

→0
(+ )− ()


=  0()
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Fig. 6.1. If  and  are both differentiable at , then the derivative of their product

at  is given by the product rule. On the graph, () =
√
 is blue, () = sin()

is red, ()() is purple, and the derivative of ()() ie. sin
2
√

+
√
 cos is thick

purple.

we obtain

lim
→0

( ·)(+ )− ( ·)()


= lim
→0

(+ ) lim
→0

(+ )− ()


+ () lim

→0
(+ )− ()



= ()0() +  0()()

Using the product rule, it is not hard to show (by induction) that

for each positive integer 

() =  has derivative 0() = −1.
(6.6)

In particular,

() =  has derivative 0() = 1 = 1·0,1
() = 2 has derivative 0() = 2
() = 3 has derivative 0() = 32
() = 4 has derivative 0() = 43

and so on.

1 In this setting we are following the convention that 0 is identically 1 even though in itself 00 is

meaningless.
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Remark 6.4 Formula (6.6) can be obtained without induction. From the dif-

ference quotient
(+ )− ()


=
(+ ) − 



apply the formula

 −  = (− )(−1 + −2+ ···+ −2 + −1)

and you’ll see that the difference quotient becomes the sum of  terms, each of

which tends to −1 as  tends to zero.

The formula for differentiating polynomials follows from (6.4) and (6.6):

 () = 
 + −1−1+···+22 + 1+ 0

then  0() = 
−1 + (− 1)−1−2+···+22+ 1

(6.7)

Example 6.5 For example,

 () = 123 − 62 − 2− 1 has derivative  0() = 362 − 12− 2

and

() =
1

4
4 − 22 + + 5 has derivative 0() = 3 − 4+ 1

¤

Example 6.6 Differentiate  () = (3 − 2+ 3)(42 + 1) and find  0(−1).
Solution: We have a product  () = ()() with

() = 3 − 2+ 3 and () = 42 + 1

The product rule gives

 0() = ()0() +  0()()
= (3 − 2+ 3)(8) + (32 − 2)(42 + 1)
= 204 − 212 + 24− 2

Setting  = −1, we have
 0(−1) = −27

¤
We come now to reciprocals.
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Theorem 6.7 (The reciprocal rule) If  is differentiable at  and () 6=
0, then 1 is differentiable at  andµ

1



¶0
() =

0()
(())2



Proof. Since  is differentiable at ,  is continuous at . Since () 6= 0, we
know that 1 is continuous at  and thus that

lim
→0

1

(+ )
=

1

()


For  different from 0 and sufficiently small, ( + ) 6= 0. The continuity

of  at  and the fact that () 6= 0 guarantee this (see Example 4.6). The

difference quotient for 1 can be written

1



µ
1

(+ )
− 1

()

¶
=

1



µ
()− (+ )

()(+ )

¶
=

µ
()− (+ )



¶
1

()(+ )


As  tends to zero, the right-hand side (and thus the left) tends to

0()
(())2



Using the reciprocal rule, we can show that Formula (6.6) also holds for

negative integers:

for each negative integer 

() =  has derivative 0() = −1.
(6.8)

This formula holds at all  except, of course, at  = 0, where no negative

power is even defined. In particular, for  6= 0,
() = −1 has derivative 0() = (−1)−2 = −−2,
() = −2 has derivative 0() = −2−3
() = −3 has derivative 0() = −3−4
() = −4 has derivative 0() = −4−5

and so on.

Proof. (of 6.8) Note that

() =
1

()
where () = − and −  is a positive integer.
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The rule for reciprocals gives

0() =
0()
(())2

=
(−−−1)

−2

= (−−1)2 = −1

Example 6.8 Differentiate () = 4
3
+ 1


 and find  0(12)

Solution: To apply (6.8), we write

() = 4−3 + −1

Differentiation gives

 0() = −12−4 − −2

Back in fractional notation,

 0() =
−12
4
− 1

2


Setting  = 1
2
, we have

 0(
1

2
) = −196

¤

Example 6.9 Find the area of the triangle formed from the coordinate axes

and the tangent line to the curve  = 1

at the point (0 0) = (0

1
0
) where

0  0.

Solution: First we write the equation for the tangent line at the point(0 0)

using the equation for a line,

 − 0 =  0(0)(− 0)

Plug in 0 = (0) =
1
0
  0(0) = − 1

20
to get:

 − 1

0
= − 1

20
(− 0)
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Fig. 6.2. The area of the triangle is always 2, no matter where on the graph we draw

the tangent line.

Next calculate the -intercept of this tangent line. The -intercept is where

 = 0. Plug  = 0 into the equation for this tangent line to get:

0− 1

0
= − 1

20
(− 0)

− 1
0

=
1

0
− 

20


20
=

2

0

 = 20

So, the -intercept of this tangent line is at  = 20 Next we claim that

the -intercept is at  = 20. Since  =
1

and  = 1


are identical equations,

the graph is symmetric when  and  are exchanged. By symmetry, then, the

-intercept is at  = 20. If you don’t trust reasoning with symmetry, you

may follow the same chain of algebraic reasoning that we used in finding the

-intercept. (Remember, the -intercept is where  = 0.)

Finally,

Area =
1

2
(20)(20) = 200 = 2 (see Figure 6.2).

Curiously, the area of the triangle is always 2, no matter where on the graph

we draw the tangent line. ¤
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Fig. 6.3. If  and  are both differentiable at  and () 6= 0, then the derivative of their
quotient at  is given by the quotient rule. On the graph, () =

√
 is blue, () is

red, ()() is purple, and the derivative of ()() i.e. 1
2
√
 sin2 

(sin− 2 cos)
is thick purple.

Finally we come to quotients in general. Suppose we want to differentiate a

function of the form () = ()(). (Of course, we have to avoid points

where () = 0.) We want a formula for 0 in terms of  0 and 0. Notice that
the derivative of the quotient is not equal to the quotient of the derivatives

(give an example!). Instead, we have the following rule:

Theorem 6.10 (The quotient rule) If  and  are differentiable at  and

() = 0, then the quotient  is differentiable at  andµ




¶0
() =

() 0()− ()0()
(())2

 (6.9)

“The derivative of a quotient is the denominator times the derivative of the

numerator minus the numerator times the derivative of the denominator,

all divided by the square of the denominator.”

Since  =  · (1), the quotient rule can be obtained from the product

and reciprocal rules. The proof of the quotient rule is left to you as an exercise.

Finally, note that the reciprocal rule is just a special case of the quotient rule.

(Take () = 1)



³ √


sin

´
= 1

2
√
 sin2 

(sin− 2 cos)
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Remark 6.11 From the quotient rule you can see that all rational functions

(quotients of polynomials) are differentiable wherever they are defined.

Example 6.12 Differentiate  () = 62−1
4+5+1



Solution: Here we are dealing with a quotient  () = ()(). The

quotient rule, gives

 0() =
(4 + 5+ 1) (12)− ¡62 − 1¢ ¡43 + 5)¢

(4 + 5+ 1)
2

=

¡−125 + 43 + 302 + 12+ 5¢
(4 + 5+ 1)

2

¤

Example 6.13 Find the points on the graph of

() =
4

2 + 4

where the tangent line is horizontal.

Solution: The rational function  is well defined for each , so it is differ-

entiable everywhere. The quotient rule gives

 0() =
(2 + 4)(4)− 4(2)

(2 + 4)2
=
16− 42
(2 + 4)

2

The tangent line is horizontal only at the points ( ()) where  0() = 0.

Therefore, we set  0() = 0 and solve for :

16− 42
(2 + 4)

2
iff 16− 42 = 0 iff  = ±2

The tangent line is horizontal at the points where  = −2 or  = 2. These are
the points (−2 (−2)) = (−2−1) and (2 (2)) = (2 1). See Figure 6.4.

6.2 Derivatives of higher order

Higher derivatives are derivatives of derivatives. For instance, if  =  0, then
 = 0 is the second derivative of  . We write  = ( 0)0 =  00. Different
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Fig. 6.4. The graph of () = 4
2+4

with two horizontal tangent lines.

notations used:
 0()  



 00() 2 2
2

 000() 3 3
3

 ()()  ()


Example 6.14 If () = 34 − 23 + 2 − 4+ 2, then

 0() = 123 − 62 + 2− 4
 00() = 362 − 12+ 2
 000() = 72− 12
 (4)() = 72

 (5)() = 0

 ()() = 0  ≥ 5 ¤

We will discuss the significance of second derivatives and those of higher

order in later sections.

6.3 Derivatives of trigonometric functions

From variations in market trends and ocean temperatures to daily fluctuations

in tides and hormone levels, change is often cyclical or periodic. Trigonometric
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functions are well suited for describing such cyclical behavior. In this section,

we investigate the derivatives of trigonometric functions and their many uses.

Beware, that the results stated in this section assume that angles are measured

in radians. Our principal goal is to determine derivative formulas for sin and

cos. In order to do this, we use two special trigonometric limits (found earlier)

lim
→0

sin


= 1 lim

→0
cos− 1


= 0 (6.10)

6.3.1 Derivatives of sine and cosine functions

With the trigonometric limits 6.10, the derivative of the sine function can be

found. We start with the definition of the derivative,

 0() = lim
→0

(+ )− ()




with () = sin, and then appeal to the sine addition identity

sin(+ ) = sin cos+ cos sin

The derivative is

 0() = lim→0
sin(+ )− sin()


Definition of derivative.

= lim→0
sin cos+ cos sin− sin()


Sine addition identity.

= lim→0
sin(cos− 1) + cos sin


Factor sin

= lim→0
sin(cos− 1)


+ lim→0

cos sin


Relation 4.12.

= sin lim→0
(cos− 1)


+ cos lim→0

sin



Both sin and cos are

independent of .

= (sin) (0) + cos (1) Limits from 6.10.

= cos Simplify.

We have proved the important result that




sin = cos (6.11)

The fact that



cos = − sin (6.12)
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Fig. 6.5. The horizontal tangent lines on the graph of () = sin occur at the zeros

of () = cos.

is proved in a similar way using a cosine addition identity

cos(+ ) = cos cos− sin sin

From a geometric point of view, these derivative formulas make sense. Because

() = sin is a periodic function, we expect its derivative to be periodic.

Observe that the horizontal tangent lines on the graph of () = sin occur

at the zeros of () = cos.

Similarly, the horizontal tangent lines on the graph of () = cos occur at

the zeros of () = − sin (Figure 6.5)
Example 6.15 (Derivatives involving trigonometric functions) Calcu-

late  0() for the following functions.

a ()= sin− 2 cos b () =
1 + sin

1− sin

Solution:

a.  0() = cos− (2 cos− 2 sin) = cos+ 2 sin− 2 cos

b.  0() =
(1− sin) cos− (1 + sin) (− cos)

(1− sin)2 = 2 cos

(1−sin)2

¤
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6.3.2 Derivatives of other trigonometric functions

The derivatives of tan cot sec and csc are obtained using the deriv-

atives of sin and cos together with the quotient rule and trigonometric

identities. Recall that

tan =
sin

cos
 cot =

cos

sin
 sec =

1

cos
and csc =

1

sin


Example 6.16 (Derivative of the tangent function) Calculate



(tan) 

Solution: Using the identity tan =
sin

cos
and the quotient rule, we have




(tan)

=




µ
sin

cos

¶
=
cos cos− sin (− sin)

(cos)2
Quotient rule.

=
cos2 + sin2 

cos2 
Simplify numerator.

=
1

cos2 
= sec2  cos2 + sin2  = 1

Therefore,



(tan) = sec2  ¤

The derivatives of cot, sec, and csc are given in Theorem 6.17. The

formulas for



(cot) 




(sec) 




(csc) can be determined using the

quotient rule.

Theorem 6.17 (Derivatives of the trigonometric functions)




(sin) = cos




(cos) = − sin




(tan) = sec2  =

1

cos2 




(cot) = − csc2  = −1

sin2 




(sec) = sec tan




(csc) = − csc cot
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Higher-order derivatives of the sine and cosine functions are important in

many applications. A few higher-order derivatives of  = sin reveal a pattern.




= cos

2

2
=




(cos) = − sin

3

3
=




(− sin) = − cos 4

4
=




(− cos) = sin

We see that the higher-order derivatives of sin cycle back periodically to

± sin. In general, it can be shown that

(2)

(2)
= (−1) sin

with a similar result for cos This cyclic behavior in the derivatives of sin

and cos does not occur with the other trigonometric functions.

6.4 Chain rule

Composition is an important way of constructing new functions. The compo-

sition of  and  is the function  ◦  defined by ( ◦ )() = (()). The

domain of  ◦  is the set of values of  in the domain of  such that () lies
in the domain of  .

Example 6.18 Compute the composite functions  ◦  and  ◦  and discuss
their domains, where

() =
√
 () = 1− 

Solution: We have

( ◦ )() = (()) = (1− ) =
√
1− 

The square root
√
1−  is defined if 1− ≥ 0 or  ≤ 1, so the domain of  ◦ 

is { :  ≤ 1} On the other hand,

( ◦ )() = (()) = (
√
) = 1−√

The domain of  ◦  is { :  ≥ 0} ¤
Remark 6.19 Example 6.18 shows that the composition of functions is not

commutative: The functions  ◦ and  ◦ may be (and usually are) different.
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Now suppose we know, that the functions  and  are differentiable. What

about differentiability of  ◦  ? How do we know that the composition of

differentiable functions is differentiable? What assumptions do we need to

compute ( ◦ )0()? If we know the derivatives of  and , how can we use

this information to find the derivative of the composition  ◦ ? The following
theorem provides the definitive answer.

Theorem 6.20 (The chain-rule theorem) If  is differentiable at  and 

is differentiable at (), then the composition  ◦  is differentiable at  and

( ◦ )0() =  0(())0() (6.13)

“the derivative of a composition  ◦  at  is the derivative of  at ()
times the derivative of  at .”

Example 6.21 Suppose () = (2+1)99 and you want to find 0(). It would
be ridiculous to multiply it out—you’d have to multiply 2+1 by itself 99 times

and it would take days. It would also be crazy to use or binomial theorem or

the product rule (since you’d need to use it too many times). Instead, let’s

view  as the composition of two functions  and , where () = 2 + 1 and

() = 99. Indeed, if you take your  and hit it with , you end up with 2+1.

If you now hit that with  , you get (2 + 1)99, which is just (). So we have

written () as (()). Now, we have () = 99, so  0() = 9998. We also
have () = 2 + 1, so 0() = 2. There’s our second factor: just 2. How

about the first one? Well, we take  0(), but instead of , we put in 2 + 1

(since that’s what () is). That is,  0(()) =  0(2+1) = 99(2+1)98. Now
we multiply our two factors together to get

0() =  0(())0() = 99(2 + 1)98(2) = 198(2 + 1)98

¤

Example 6.22 Find  0() if

() =
1

24 − 2 + 8

Solution: First write

() =
¡
24 − 2 + 8

¢−1
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so the inside function is 24 − 2 + 8 and the outside function is −1 Thus
(according to 6.13)

 0() = − ¡24 − 2 + 8
¢−2

(83 − 2) = − 83 − 2
(24 − 2 + 8)

2

¤
Next we will prove the chain rule (Theorem 6.20), but first we need a pre-

liminary result.

Theorem 6.23 If  is differentiable at  and if  = (), then

∆ =  0()∆+ ∆

where ∆ = (+∆)− (), → 0 as ∆→ 0 and  = 0 if ∆ = 0.

Proof. Define

 =

⎧⎨⎩
(+∆)−()

∆
if ∆ 6= 0

0 if ∆ = 0

(6.14)

If ∆ 6= 0, it follows from (6.14) that

∆ = [(+∆)− ()]−  0()∆ (6.15)

But,

∆ = (+∆)− ()

so (6.15) can be written as

∆ = ∆ −  0()∆ (6.16)

If ∆ = 0, then (6.16) still holds (why?), so (6.16) is valid for all values of

∆. It remains to show that  → 0 as ∆ → 0 But this follows from the

assumption that  is differentiable at , since

lim
∆→0

 = lim
∆→0

∙
(+∆)− ()

∆
−  0()

¸
=  0()−  0() = 0

We are now ready to prove the chain rule.

Proof. Since  is differentiable at  and  = (), it follows from Theorem

6.23 that

∆ = 0()∆+ 1∆ (6.17)
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where 1 → 0 as ∆→ 0 And since  = () is differentiable at  = (), it

follows from Theorem 6.23 that

∆ =  0()∆+ 2∆ (6.18)

where 2 → 0 as ∆→ 0

Factoring out the ∆ in (6.18) and then substituting (6.17) yields

∆ =
£
 0() + 2

¤ £
0()∆+ 1∆

¤
or

∆ =
£
 0() + 2

¤ £
0() + 1

¤
∆

or if ∆ 6= 0
∆

∆
=
£
 0() + 2

¤ £
0() + 1

¤
(6.19)

But (6.17) implies that ∆→ 0 as ∆→ 0, and hence 1 → 0 and 2 → 0 as

∆→ 0 Thus, from (6.19)

lim
∆→0

∆

∆
=  0()0()

or



=  0()0() =




· 


The chain rule can actually be invoked multiple times all at once. For ex-

ample, let

 = ((3 − 10)9 + 22)8

What is ? Simply let  = 3 − 10, and  = 9 + 22, so that  = 8.

Then use a longer form of the chain rule:




=














You can’t get this wrong if you think about it:  is a function of , which is

a function of , which is a function of . So there’s only one way the formula

could possibly look! Anyway, we have

 = 8  = 9 + 22  = 3 − 10




= 87




= 98




= 33 − 10
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Plugging everything in, we have




=












=
¡
87
¢ ¡
98
¢ ¡
33 − 10¢

We’re close, but we need to get rid of the  and  terms. First, replace  by

9 + 22




=

¡
87
¢ ¡
98
¢ ¡
33 − 10¢

=
³
8
¡
9 + 22

¢7´ ¡
98
¢ ¡
33 − 10¢ 

Now replace  by 3 − 10 and group the factors of 8 and 9 together to get
the actual answer:




=

³
8
¡
9 + 22

¢7´ ¡
98
¢ ¡
33 − 10¢

=

µ
8
³¡
3 − 10¢9 + 22´7¶³9 ¡3 − 10¢8´ ¡33 − 10¢

= 72
³¡
3 − 10¢9 + 22´7 ¡3 − 10¢8 ¡33 − 10¢

The name “chain rule” is appropriate because the desired derivative is ob-

tained by a two-link “chain” of simpler derivatives. But there are different

explonations. One very well known professor said: "You know, people often

wonder where the name chain rule comes from. I was just wondering about

that myself. So is it because it chains you down? Is it like a chain fence? I

decided what it is. It’s because by using it, you burst the chains of differen-

tiation, and you can differentiate many more functions using it. So when you

want to think of the chain rule, just think of that chain there. It lets you burst

free."2

6.5 Implicit differentiation; rational powers

6.5.1 Functions defined explicitly and implicitly

An equation of the form  = () is said to define  explicitly as a function of

 because the variable  appears alone on one side of the equation and does

2Citation from: David Jerison, 18.01 Single Variable Calculus, Fall 2007. (Massachusetts Institute

of Technology: MIT OpenCourseWare). http://ocw.mit.edu (accessed 07 11, 2011). License: Creative

Commons Attribution-Noncommercial-Share Alike.
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not appear at all on the other side. However, sometimes functions are defined

by equations in which  is not alone on one side; for example, the equation

+  + 1 =  (6.20)

is not of the form  = (), but it still defines  as a function of  since it can

be rewritten as

 =
− 1
+ 1

Thus, we say that (6.20) defines  implicitly as a function of , the function

being

() =
− 1
+ 1



An equation in  and  can implicitly define more than one function of . This

can occur when the graph of the equation fails the vertical line test, (XXX

dotychczas niezdefiniowane VLT) so it is not the graph of a function of . For

example, if we solve the equation of the circle

2 + 2 = 1 (6.21)

for  in terms of , we obtain  = ±
√
1− 2, so we have found two functions

that are defined implicitly by (6.21), namely

1() = +
p
1− 2 and 2() = −

p
1− 2

The graphs of these functions are the upper and lower semicircles of the circle

2 + 2 = 1 This leads us to the following definition.

Definition 6.24 We will say that a given equation in  and  defines the

function  implicitly if the graph of  = () coincides with a portion of the

graph of the equation.

Although it was a trivial matter in the last example to solve the equation

2 + 2 = 1 for  in terms of , it is difficult or impossible to do this for

some equations. For example the problem with 5 +  = 3 is that it can’t be

solved for . Galois proved3 that there is no solution formula for fifth-degree

equations. The function () cannot be given explicitly in this case. Thus,

even though an equation may define one or more functions of , it may not be

possible or practical to find explicit formulas for those functions.

3That was before he went to the famous duel, and met his end. Fourth-degree equations do have

a solution formula, but it is practically never used.
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6.5.2 Implicit differentiation

Up to this point we have been differentiating functions defined explicitly in

terms of an independent variable. We can also differentiate functions not ex-

plicitly given in terms of an independent variable. Suppose we know that  is a

differentiable function of  and satisfies a particular equation in  and . If we

find it difficult to obtain the derivative of , either because the calculations are

burdensome or because we are unable to express  explicitly in terms of , we

may still be able to obtain  by a process called implicit differentiation.

This process is based on differentiating both sides of the equation satisfied by

 and . To illustrate this, let us consider the simple equation

 = 1 (6.22)

One way to find  is to rewrite this equation as

 =
1


(6.23)

from which it follows that



= − 1

2
 (6.24)

Another way to obtain this derivative is to differentiate both sides of (6.22)

before solving for  in terms of , treating  as a (temporarily unspecified)

differentiable function of . With this approach we obtain




[] =




[1]





[] + 




[] = 0





+  = 0




= −



If we now substitute (6.23) into the last expression, we obtain




= − 1

2

which agrees with Equation (6.24). ¤
Now we can establish general strategy for implicit differentiation:

1. Differentiate both sides of the equation with respect to 
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2. Collect all terms involving  on the left side of the equation and

move all other terms to the right side of the equation.

3. Factor  out of the left side of the equation.

4. Solve for 

Example 6.25 Assume that  is a differentiable function of  which satisfies

the given equation

22 − 3 + 1 = + 2

Use implicit differentiation to express  in terms of  and .

Solution: We have

22



+ 4| {z } − 32



| {z } = 1 + 2


(by the product rule) (by the chain rule)

so,

(22 − 32 − 2)

= 1− 4

Therefore



=

1− 4
22 − 32 − 2

¤

Remark 6.26 The graph of an equation does not always define a function

because there may be more than one -value for a given value of . Implicit

differentiation works because the graph is generally made up of several pieces

called branches, each of which does define a function (a proof of this fact relies

on the Implicit Function Theorem from advanced calculus). For example, the

branches of the unit circle 2 + 2 = 1 are the graphs of the functions  =√
1− 2 and  = −√1− 2 In most examples, the branches are differentiable

except at certain exceptional points where the tangent line may be vertical.

Example 6.27 Figure 6.6 shows the curve 23 + 23 = 9 and the tangent

line at the point (1 2). What is the slope of the tangent line at that point?

Solution: We want  where  = 1 and  = 2. We proceed by implicit

differentiation:

62 + 62



= 9




+ 9

22 + 22



= 3




+ 3
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Fig. 6.6. The graph of 23 + 23 = 9 and the tangent line (in red) at (1 2)

Setting  = 1 and  = 2, we have

2 + 8



= 3




+ 6

5



= 4




=
4

5


The slope of the tangent line at the point (1 2) is 45. ¤

Example 6.28 Find the slope of the graph of 32 = 3+6 (see Figure 6.7)

at the point (2 1)

Solution: Having the equation

32 = 3 + 6

we can differentiate both sides of it with respect to 




(32) =





¡
3

¢
+ 0
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Fig. 6.7. The graph of 32 = 3 + 6 and the tangent line (in red) at (2 1)

Using the product rule and the chain rule we get

322 + 3 (2)



= (1) 3 + 

¡
32
¢ 




Now, we want to isolate  so we have

23



− 32 


= 3 − 322

or, after factoring


¡
22 − 3¢ 


= 2

¡
 − 32¢

which gives




=

2
¡
 − 32¢

 (22 − 3) =

¡
 − 32¢

 (22 − 3)
We want to know the slope at (2 1) so we evaluate




|(21) =

1
¡
1− 3 · 22¢

2 (2 · 22 − 3 · 1) = −
11

10
 ¤
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Fig. 6.8. The set of points satisfying the Valentine equation looks like a heart.

Example 6.29 (Application of the chain rule) The Valentine equation

(2 + 2 − 1)3 − 23 = 0

relates  with , but we can not write the curve as a graph of a function

 = (). Extracting  or  is difficult. The set of points satisfying the equation

looks like a heart. You can check that (1 1) satisfies the Valentine equation.

Near it, the curve looks like the graph of a function (). Lets fill that in and

look at the function ()

() = (2 + (())2 − 1)3 − 2 (())3 

The key is that () is actually zero and if we take the derivative, then we get

zero too. Using the chain rule, we can take the derivative

 0() = 3(2+(())2−1)(2+2()0())−2 (())3−23 (())2 0() = 0

We can now solve solve for 0

0() = − 3(2 + (())2 − 1)2− 2 (())3
3(2 + (())2 − 1)2()− 32 (())2 
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Filling in  = 1, () = 1, we see this is −43. We have computed the slope
of  without knowing . The tangent line to our cure at (1 1) is

() = −4
3
+

7

3

(see Figure 6.8). ¤

6.5.3 Rational Powers

You have seen that the formula




() = −1

holds for all real  if  is a positive integer and for all  6= 0 if  is a negative
integer. For  6= 0, we can stretch the formula to  = 0 by writing





¡
0
¢
=




(1) = 0 = 0−1

The formula can then be extended to all rational exponents :





¡


¢
=




−1 (6.25)

and is called “the rational power rule”. The formula applies to all  6= 0 where
 is defined. To justify it we operate under the assumption that the function

 = 1 is differentiable at all  where 1 is defined.

Proof. From  = 1 we get

 = 

Implicit differentiation with respect to  gives

−1



= 1

and therefore



=
1


1− =

1


(1−) =

1


(1)−1

The function  =  is a composite function:

 =  = (1)

Applying the chain rule, we have




= (1)−1




(1) = (−1)

1


(1)−1 =







−1
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as asserted.

Here are some simple examples:





³
23

´
=

2

3 3
√







³
52

´
=
5

2

3
2 





³
−79

´
= − 7

9
16
9



If  is a differentiable function of , then, by the chain rule




() =




()−1




 (6.26)

The verification of this is left to you. The result holds on every open -interval

where ()−1 is defined.

Example 6.30 For all real ,




[(1 + 2)15] =

1

5
(1 + 2)−45 (2) =

2

5



(2 + 1)
4
5



¤

Example 6.31 Find and simplify  0() if () = 
(2+1)13



Solution: Using the quotient rule we have

 0() =
(1) (2 + 1)13 − 1

3
(2 + 1)−232

(2 + 1)23


To simplify the result, we can multiply the nominator and the denumerator

by 3(1 + 2)23 to get

 0() =
(1) (2 + 1)13 − 1

3
(2 + 1)−232

(2 + 1)23
· 3(1 + 2)23

3(1 + 2)23

=
3(1 + 2)− 22
(2 + 1)13

=

¡
2 + 3

¢
3 (2 + 1)

4
3



¤

Example 6.32 Find 

if 252 + 727 = 9 and compute the slope of the

graph at (1 1)
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Fig. 6.9. The graph of 252 + 727 = 9 and the tangent line (in red) at (1 1)

Solution: Figure 6.9 presents the graph of

252 + 727 = 9 (6.27)

and the tangent line (in red) at the indicated point. Implicit differentiation

with respect to , the rational power rule (6.25) and the product rule give

532 + 2−57



= 9

µ
(1)  + 





¶
Now, we want to isolate  so we have

2−57



− 9


= 9 − 532

After factoring we get ³
2−57 − 9

´ 


= 9 − 532

or



=
9 − 532
2−57 − 9 = 

5
7
5

3
2 − 9

9
5
7 − 2
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To obtain the required slope, we evaluate




|(11) =

5− 9
9− 2 = −

4

7

¤

6.6 Review exercises: Chapter
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7

The derivative and graphs

We have seen how to differentiate functions from several different families. Now

we can use this knowledge to help us sketch graphs of functions in general.

Although graphing utilities are useful for determining the general shape of

a graph, many problems require more precision than graphing utilities are

capable of producing. The purpose of this section is to develop mathematical

tools that can be used to determine the exact shape of a graph and the precise

locations of its key features. We’ll see how the derivative helps us understand

the maxima and minima of functions, and how the second derivative helps us

to understand the so-called concavity of functions.

7.1 Extrema of functions

If we say that  =  is an extremum of a function  , this means that  has

a maximum or minimum at  = . (The plural of “extremum” is “extrema.”)

We’ve already looked a little bit at maxima and minima in Section 5.3 of

Chapter 5; I strongly suggest taking a peek back at that before you read on.

In any event, we need to go a little deeper and distinguish between two types

of extrema: global and local.

7.1.1 Global and local extrema

The basic idea of a maximum is that it occurs when the function value is

highest. Think about where the maximum of the following function on its

domain [0 7] should be (Figure 7.1):

Certainly the maximum value that this function gets to is 3, which occurs

when  = 0, so it’s true that the function has a maximum at  = 0. On the

other hand, imagine the graph is a hill (in cross-section) and you’re climbing

up it. Suppose you start at the point (2−1) and walk up the hill to the right.
Eventually you reach the peak at (5 2), and then you start going back down

again. It sure feels as if the peak is some sort of maximum—it’s the top of

the mountain, at height 2, even though there’s a neighboring peak to the left

that’s taller. If the high ground near  = 0 were covered in fog, you couldn’t
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Fig. 7.1. Where the maximum of the following function on its domain [0; 7] should

be?

even see it when you climbed the peak at (5 2), so you’d really feel as if you

were at a maximum. In fact, if we restrict the domain to [2 7], then the point

 = 5 is actually a maximum.

We need a way of clarifying the situation. Let’s say that a global maximum

(or absolute maximum ) occurs at  =  if () is the highest value of 

on the entire domain of  . In symbols, we want () ≥ () for any value

in the domain of  . This is exactly the same definition we used before when

we looked at maxima in general; we’re simply being more precise and saying

“global maxima” instead of just “maxima.”

As we noted before, there could be multiple global maxima; for example,

cos() has a maximum value of 1, but this occurs for infinitely many values

of  on (−∞∞). (These values are all the integer multiples of 2, as you can
see from the graph of  = cos().)

How about that other type of maximum? Let’s say that a local maximum

(or relative maximum) occurs at  =  if () is the highest value of  on

some small open interval containing . You can think of this as throwing away

most of the domain, just concentrating on values of  close to  (which belong

to the domain of ), then insisting that the function is at its maximum out of

only those values.

Let’s see how this works in the case of our above graph. We see that  = 5 is a

local maximum, since (5 2) is the highest point around if you only concentrate

on the function near  = 5. For example, if you cover up the part of the graph

to the left of  = 3, then the point (5 2) is the highest point remaining. On

the other hand,  = 5 isn’t a global maximum, since the point (0 3) is higher

up. This means that  = 0 is a global maximum. It’s also a local maximum;
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in fact, it’s pretty obvious that every global maximum is also a local

maximum.

In the same way, we can define global and local minima. In the above graph,

you can see that  = 2 is a global minimum (with value −1), since the height
is at its lowest. On the other hand,  = 7 is actually a local minimum (with

value 0). Indeed, if you just look at the function to the right of  = 5, you can

see that the lowest height occurs at the endpoint  = 7

7.1.2 The Extreme Value Theorem (  )

In Chapter 5, we looked at the max-min theorem. This says that a continuous

function on a closed interval [ ] must have a global maximum somewhere in

the interval and also a global minimum somewhere in the interval.

We also saw that if the function isn’t continuous, or even if it is continu-

ous but the domain isn’t a closed interval, then there might not be a global

maximum or minimum. For example, the function  given by () = 1 on

the domain [−1 1]\{0} doesn’t have a global maximum or minimum on that

domain. (Draw it and see why!)

The problem with the max-min theorem is that it doesn’t tell you anything

about where these global maxima and minima are. That’s where the derivative

comes in. Let’s say that  =  is a critical point for the function  if either

 0() = 0 or if  0() does not exist. Then we have this nice result:

Theorem 7.1 Suppose that  is defined on ( ) and  is in ( ). If  is a

local maximum or minimum of  , then  must be a critical point for  . That

is, either  0() = 0 or if  0() does not exist.

Proof. Let’s first suppose that  =  is a local minimum for  . If  0() does
not exist, then it’s a critical point, which is exactly what we were hoping for.

On the other hand, if  0() exists, then

 0() = lim
→0

(+ )− ()



Since  is a local minimum, we know that (+ ) ≥ () when +  is very

close to . Of course, +  is close to  exactly when  is close to 0. For such

, the numerator (+ )− () in the above fraction must be nonnegative.

When   0, the quantity

(+ )− ()



is positive (or 0), but when   0, the quantity is negative (or 0). So the

right-hand limit is positive (or 0), but when   0, the quantity is negative
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Fig. 7.2.  is a critical point of  .

(or 0). So the right-hand limit

 0() = lim
→0+

(+ )− ()



must be greater than or equal to 0, while the same left-hand limit is less than

or equal to 0. Since the two-sided limit exists, the left-hand and right-hand

limits are equal; the only possibility is that they are both 0. This shows that

 0() = 0, so  =  is once again a critical point for  .

If  =  is a local maximum we can repeat the argument.

So local maxima and minima in an open interval occur only at critical points.

Figure 7.2 illustrates the two types of critical numbers. Notice in the definition

that the critical number has to be in the domain of  but does not have to be

in the domain of  0 It’s not true that a critical point must be a local maximum
or minimum! For example, if () = 3, then  0() = 32, and you can see

that  0(0) = 0. This means that  = 0 is a critical point for  . On the other
hand,  = 0 is neither a local maximum nor a local minimum, as you can see

by drawing the graph of  = 3.

The above theorem applies to open intervals. How about when the domain

of your function is a closed interval [ ]? Then the endpoints  and  might

be local maxima and minima; they aren’t covered by the theorem. So in the

case of a closed interval, local maxima and minima can occur only at critical

points or at the endpoints of the interval.
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Guidelines for finding extrema on a closed interval:

To find the extrema of a continuous function on a closed interval:

1. Find the critical numbers of in ( )

2. Evaluate at each critical number in ( )

3. Evaluate at each endpoint of [ ]

4. The least of these values is the minimum. The greatest is the maximum.

Example 7.2 Find the extrema of  () = 34 − 43 on the interval [−1 2].
Solution: Begin by differentiating the function.

 0 () = 123 − 122

To find the critical numbers of  you must find all -values for which  0 () = 0
and all -values for which  0 () does not exist. Set  0 () equal to 0 and factor

 0 () = 123 − 122 = 0

122 (− 1) = 0
Now you can easily find that the critical numbers are:  = 0 and  = 1

Because  0() is defined for all  from the interval [−1 2] you can conclude
that these are the only critical numbers of  . By evaluating  at these two

critical numbers and at the endpoints of [−1 2] you can determine that the
maximum is  (2) = 16 and the minimum is  (1) = −1 as shown in the table.

Left Critical Critical Right

endpoint number number endpoint

(−1) = 7 (0) = 0 (1) = −1 (2) = 16

Minimum Maximum

The graph of is shown in Figure 7.3. In Figure 7.3, note that the critical

number  = 0 does not yield a relative minimum or a relative maximum.

¤

Example 7.3 Find the absolute maximum and minimum values of () =

2− 323 on the interval [−1 3].
Solution: We calculate the derivative to find the critical numbers. Note

the difficult factoring steps.

() = 2− 323

 0() = 2− 2
3
√

= 2

µ
3
√
− 1
3
√


¶
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Fig. 7.3. The graph of  () = 34 − 43 on the interval [−1 2]

The critical numbers are 1 (where the derivative is 0) and 0 (where the deriv-

ative is undefined). We now evaluate the function at these 2 points and the

endpoints.

Left Critical Critical Right

endpoint number number endpoint

(−1) = −5 (0) = 0 (1) = −1 (3) = 6− 3 3
√
9 ≈ −024025

Minimum Maximum

The absolute maximum is 0, and the absolute minimum is −5 . Notice on the
graph that there is a relative maximum at (3 6−3 3

√
9) and a relative minimum

at (1−1). The graph has a sharp corner, or cusp, at (0 0). ¤
If the domain isn’t bounded, then the situation is a little more complicated.

For example, consider the two functions  and , both with domain [0∞),
whose graphs look like as it is shown in Figure 7.5. In both cases,  = 2 is

obviously a critical point, while the endpoints are 0 and ∞. Wait a second,
∞ isn’t really an endpoint, since it doesn’t really exist! Let’s add it to the list

anyway, so that the list is 0 2, and ∞; note that the same list works for both
 and . Let’s take a look at  first. We see that (0) = 0, (2) = 3, while

(∞) only makes sense if you think of it as
lim
→∞ ()

This limit is 1, since  = 1 is a horizontal asymptote for  . The highest of these

function values is 3, which occurs at  = 2, so  = 2 is a global maximum for
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Fig. 7.4. The graph of  () = 2− 323 on the interval [−1 3]

 . The lowest function value is at  = 0, so  = 0 is a global minimum for  .

The right-hand “endpoint” at 1 doesn’t even come into it.

How about ? Well, this time (0) = 2, (2) = 3, and the right-hand end-

point is covered by the observation that

lim
→∞ () = 1

The highest value is still 3, which occurs at  = 2, so  = 2 is also a global

maximum for . How about the lowest value? Well, that value, which is 1,

occurs as →∞. Does this mean that 1 is a global minimum for ? Of course
not, because ∞ isn’t even a number; the function  has no global minimum.1

At  = 0 the function () has a local minimum only.

7.2 Mean Value Theorem (  )

The Mean Value Theorem is a cornerstone in the theoretical framework of

calculus. Several critical theorems rely on the Mean Value Theorem; the theo-

rem also appears in practical applications. We begin with a preliminary result

known as Rolle’s theorem.

Consider a function  that is continuous on a closed interval [ ] and dif-

ferentiable on the open interval ( ). Furthermore, assume  has the special

1On the other hand,  does have a global infimum. This concept is a little beyond our scope,

though. Check out a book on real analysis if you want to learn more.
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Fig. 7.5. Functions  and , both with domain [0;∞)

Fig. 7.6. Rolle’s theorem

property that () = () (Figure 7.6). The statement of Rolle’s Theorem is

not surprising: It says that somewhere between  and , there is at least one

point at which  has a horizontal tangent line.

Theorem 7.4 (Rolle) Let  be continuous on a closed interval [ ] and

differentiable on ( ) with () = (). There is at least one point  in ( )

such that  0 () = 0.

Proof. The function  satisfies the conditions of max-min Theorem (Section

5.3 of Chapter 5) and thus attains its absolute maximum and minimum values

on [ ]. Those values are attained either at an endpoint or at an interior point

.
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Case 1: First suppose that  attains both its absolute maximum and min-

imum values at the endpoints. Because () = (), the maximum and min-

imum values are equal, and it follows that  is a constant function on [ ].

Therefore,  0() = 0 for all  in ( ),and the conclusion of the theorem holds.
Case 2: Assume at least one of the absolute extreme values of  does not

occur at an endpoint. Then,  must attain an absolute extreme value at an

interior point of ( ); therefore, must have either a local maximum or a local

minimum at a point  in ( ). We know from Theorem 7.1 that at a local

extremum the derivative is zero. Thus,  0 () = 0 for at least one point  of

( ), and again the conclusion of the theorem holds.

Why does Rolle’s Theorem require continuity? A function that is not con-

tinuous on [ ] may have identical values at both endpoints and still not have

a horizontal tangent line at any point on the interval. Similarly, a function

that is continuous on [ ] but not differentiable at a point of ( ) may also

fail to have a horizontal tangent line. Sketch examples and see Figure 7.8.

Exercise 7.1 In order to verify Rolle’s theorem find an interval  on which

Rolle’s theorem applies to () = 3 − 62 + 8. Then find all the points  in
 at which  0() = 0.

Solution: Because  is a polynomial, it is everywhere continuous and

differentiable. We need an interval [ ] with the property that () = ().

Noting that

() = (− 2)(− 4)
we choose the interval [0 4], because (0) = (4) = 0 (other intervals are

possible). The goal is to find points  in the interval (0 4) at which  0() = 0,
which amounts to the familiar task of finding the critical points of  . The

critical points satisfy

 0() = 32 − 12+ 8 = 0

Using the quadratic formula, the roots are

12 = 2± 2
3

√
3 or 1 ≈ 31547 and 2 ≈ 084530

As shown in Figure 7.7, the graph of  has two points at which the tangent

line is horizontal. ¤
Rolle’s theorem is not just a stepping stone toward the mean-value theorem.

It is in itself a useful tool.

Example 7.5 Use Rolle’s theorem to show that () = 23+5−1 has exactly
one real zero.
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Fig. 7.7.  0() = 0 at two points in (0 4)

Solution: Since  is a cubic, we know that  has at least one real zero.

Suppose that  has more than one real zero. In particular, suppose that () =

() = 0 where  and  are real numbers and  6= . Without loss of generality,

we can assume that   . Since every polynomial is everywhere differentiable,

 is differentiable on ( ) and continuous on [ ]. Thus, by Rolle’s theorem,

there is a number  in ( ) for which 0() = 0. But

0() = 62 + 5 ≥ 5 for all 

and 0() cannot be 0. The assumption that  has more than one real zero
has led to a contradiction. We can conclude therefore that  has only one real

zero. ¤

Remark 7.6 If  fails to be differentiable at even one number in the interval,

then the conclusion of the Rolle’s theorem may be false (see Figure 7.8)

Now we can consider extremely important generalization of the Rolle’s the-

orem: The Mean Value Theorem. It is easily understood with the aid of a

picture. Figure 7.9 shows a function  differentiable on ( ) with a secant

line passing through ( ()) and ( ()); the slope of the secant line is the

average rate of change of  over [ ]. The Mean Value Theorem claims that

there exists a point  in ( ) at which the slope of the tangent line at  is

equal to the slope of the secant line. In other words, we can find a point on

the graph of  where the tangent line is parallel to the secant line.

We are now ready to state and give a proof of the Mean-value theorem.
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Fig. 7.8. Conclusion of the Rolle’s theorem is false for () = 23 (with  0() =
2

3 3
√

)

on [−1 1]

Fig. 7.9.
()− ()

− 
=  0()
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Theorem 7.7 (Mean-value theorem) If  is continuous on the closed in-

terval [ ] and differentiable on ( ), then there is at least one point  in

( ) such that

()− ()

− 
=  0()

Proof. The equation of the secant through ( ()) and ( ()) is

 − () =
()− ()

− 
(− )

which we can rewrite as

 =
()− ()

− 
(− ) + ()

Let

() = ()−
∙
()− ()

− 
(− ) + ()

¸


Note that () = () = 0 Also,  is continuous on [ ] and differentiable

on ( ) since  is. So, by Rolle’s theorem there exists  in ( ) such that

0() = 0 But

0() =  0()− ()− ()

− 


so

0() =  0()− ()− ()

− 
= 0

Therefore

 0() =
()− ()

− 

and the proof is complete.

The main significance of the Mean Value Theorem is that it enables us to

obtain information about a function from information about its derivative.

Our immediate use of this principle is to prove the basic facts concerning

increasing and decreasing functions.

Remark 7.8 Rolle’s theorem is a special case of   , but the Mean Value

Theorem is also (as we have seen) a consequence of Rolle’s theorem. If two

mathematical statements are each consequences of each other, they are called

equivalent. Thus Rolle’s theorem is equivalent to the Mean Value Theorem.

Now let’s look at an example of how to use the   theorem.
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Fig. 7.10. Starting from  the graph of  must lie between two stright lines with the

slopes  and 

Example 7.9 Let  be continuous on [ ] and differentiable on ( ) with

 ≤  0() ≤ for all  in ( ) Show that

(− ) ≤ ()− () ≤(− ) if  ≤  ≤  ≤ 

Solution: Let  ≤  ≤  ≤  Then for come  between  and 

 0() =
()− ()

− 


So

 ≤  0() =
()− ()

− 
≤

and therefore

(− ) ≤ ()− () ≤(− )

You can interpret this inequality graphically fixing  and drawing lines with

the slope  and  through the point ( ()) The result says, that starting

from  the graph of  must lie between these two lines (Figure 7.10). ¤
Now, let’s use the Mean Value Theorem to show two useful facts about deriv-

atives:

1. Suppose that a function  has derivative  0() = 0 for every  in

some interval ( ). It is intuitively obvious that the function should

be constant on the whole interval. How do we prove it? First, fix some
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special number  in the interval, and then pick any other number  in

the interval. We know from the Mean Value Theorem that there’s some

number  between  and  such that

 0() =
()− ()

− 


Now we have assumed that  0 is always equal to 0, the quantity  0()
must be 0. So the above equation says that

()− ()

− 
= 0

which means that () = (). If we now let  = (), we have shown

that () =  for all  in the interval ( ), so  is constant! In summary,

if  0() = 0 for all  in ( ), then  is constant on ( ).

2. Suppose that two differentiable functions have exactly the same deriva-

tive. Are they the same function? Not necessarily. They could differ by

a constant; for example, () = 2 and () = 2 + 1 have the same

derivative, 2, but  and  are clearly not the same function. Is there any

other way that two functions could have the same derivative everywhere?

The answer is no. Differing by a constant is the only way:

if  0() = 0() for all , then () = () +  for some constant .

It turns out to be quite easy to show this using #1 above. Suppose

that  0() = 0() for all . Now set () = () − (). Then we can

differentiate to get 0() =  0()− 0() = 0 for all , so  is constant.
That is, () =  for some constant . This means that ()− () =

, or () = () + . The functions  and  do indeed differ by a

constant. This fact will be very useful when we look at integration in a

few chapters’ time.

7.3 Increasing and decreasing functions

In this section you will learn how derivatives can be used to relative extrema

as either relative minima or relative maxima. First, it is important to define

increasing and decreasing functions.
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Fig. 7.11. The derivative is related to the slope of a function.

Definition 7.10 (of increasing and decreasing functions) A function 

is increasing on an interval if for any two numbers 1 and 2 in the interval,

1  2 implies (1)  (2)

A function  is decreasing on an interval if for any two numbers 1 and 2
in the interval, 1  2 implies (1)  (2)

A function is increasing if, as  moves to the right, its graph moves up,

and is decreasing if its graph moves down. Increasing function "preserves in-

equalities", whereas decreasing function "reverses" inequalities. For example,

the function in Figure 7.11 is decreasing on the interval (−∞ ) is constant

on the interval ( ) and is increasing on the interval (∞) As shown in
Theorem 7.11 below, a positive derivative implies that the function is increas-

ing; a negative derivative implies that the function is decreasing; and a zero

derivative on an entire interval implies that the function is constant on that

interval.

Theorem 7.11 (Test for increasing and decreasing functions) Let  be

a function that is continuous on the closed [ ] interval and differentiable on

the open interval ( )

1. If  0()  0 for all  in ( ) then  is increasing on [ ]

2. If  0()  0 for all  in ( ) then  is decreasing on [ ]

3. If  0() = 0 for all  in ( ) then  is constant on [ ]
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Proof. To prove the first case, assume that  0()  0 for all  in the interval
( ) and let 1  2 be any two points in the interval. By the Mean Value

Theorem, you know that there exists a number  such that 1    2 and

(2)− (1)

2 − 1
=  0()

Because and you know that  0()  0 and 2 − 1  0 you know that

(2)− (1)  0

which implies that (1)  (2) So,  is increasing on the interval. The

second case has a similar proof, and the third case was considered on page

188.

Remark 7.12 The conclusions in the first two cases of Theorem 7.11 are

valid even if  0() = 0 at a finite number of -values in ( ) (see Example

7.15).

To carry out the test for increasing and decreasing functions, we make a

useful observation:  0() can change sign at a critical point, but it cannot
change sign on the interval between two consecutive critical points (one can

prove this is true even if  0() is not assumed to be continuous). So we can
determine the sign of  0() on an interval between consecutive critical points
by evaluating  0() at an any test point 0 inside the interval. The sign of
 0(0) is the sign of  0() on the entire interval.

Example 7.13 Let () = 34−43−122+10 Find the intervals on which
 is increasing and the intervals on which  is decreasing.

Solution: Note that () is differentiable on the entire real number line.

First compute  0() and simplify

 0() = 123 − 122 − 24
= 12

¡
2 − − 2¢

= 12 (+ 1) (− 2)

To determine the critical numbers of  set  0 equal to zero.

 0() = 0 at  = 0−1 2

Because there are no points for which  0() does not exist, you can conclude
that  = 0−1 2 are the only critical numbers. The table summarizes the
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Fig. 7.12. The graph of the function () = 34 − 43 − 122 + 10

testing of the four intervals determined by these three critical numbers.

Interval (−∞−1) (−1 0) (0 2) (2∞)
Test Value −2 −05 1 3

Sign of  0() − + − +

Conclusion Decreasing Increasing Decreasing Increasing

So,  is increasing on the intervals [−1 0] and [2∞) and decreasing on the
intervals (−∞−1] and [0 2] as shown in Figure 7.12.

Example 7.14 Let () = 13(2 − ) Find the intervals on which  is

increasing and the intervals on which  is decreasing.

Solution: First we compute  0() and simplify

() = 13(2− ) = 213 − 43

 0() =
2

3
−23 − 4

3
13

=
2(1− 2)
323



 0() = 0 at  =
1

2
 and is undefined at  = 0
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Fig. 7.13. The graph of the function () = 13(2− )

Now you can conclude that  = 0 and  = 12 are the only critical numbers.

The table summarizes the testing of the three intervals determined by these

two critical numbers.

Interval (−∞ 0) (0
1

2
) (

1

2
∞)

Test Value −2 025 1

Sign of  0() + + −
Conclusion Increasing Increasing Decreasing

Continuous function () has the vertical asymptote at  = 0, as you can see

on Figure 7.13. ¤

Example 7.15 Let () = 65 − 154 + 103 Find the intervals on which 
is increasing and the intervals on which  is decreasing.

Solution: Note that () as a polynomial, is differentiable on the entire

real number line. We have

 0() = 304 − 603 + 302
= 302

¡
2 − 2+ 1¢

= 302 (− 1)2 

So

 0() = 0 at  = 0 and  = 1
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Fig. 7.14. The graph of the function () = 65 − 154 + 103

Now we can conclude that  = 0 and  = 1 are the only critical numbers.

The table summarizes the testing of the three intervals determined by these

two critical numbers.

Interval (−∞ 0) (0 1) (1∞)
Test Value −2 05 2

Sign of  0() + + +

Conclusion Increasing Increasing Increasing

So,  is increasing on (−∞∞) as it is shown in Figure 7.14, where two hori-
zontal lines are also drawn This example illustrates the Remark 7.12. ¤
The guidelines below summarize the steps followed in the examples above.

Guidelines for finding intervals on which a function is increasing

or decreasing:

Let  be continuous on the interval ( ) To find the open intervals on

which  is increasing or decreasing, use the following steps.

1. Locate the critical numbers of  in ( ) and use these numbers to

determine test intervals.

2. Determine the sign of  0() at one test value in each of the intervals.
3. Use Theorem 7.11 to determine whether is increasing or decreasing

on each interval.

These guidelines are also valid if the interval ( ) is replaced by an

interval of the form (−∞ ) (∞) or (−∞∞)
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Fig. 7.15. Relative extrema of () = 34 − 43 − 122 + 10

A function is strictly monotonic on an interval if it is either increasing on the

entire interval or decreasing on the entire interval. For instance, the function

() = 3 is strictly monotonic on the entire real number line because it is

increasing on the entire real number line.

7.4 The First Derivative Test

There is a useful test for determining whether a critical point is a min or max

(or neither) based on the sign change of the derivative  0() For instance, in
Figure 7.12 (from Example 7.13), the function () = 34 − 43 − 122 + 10
has a relative maximum at the point (0 0) because is increasing immediately

to the left of and decreasing immediately to the right of  = 0 Similarly, it

has a relative minimum at the point (−1 5) because is decreasing immediately
to the left of and increasing immediately to the right of  = −1 (see Figure
7.15). The following theorem, called the First Derivative Test, makes this more

explicit.

Theorem 7.16 (First Derivative Test) Let  be a critical number of a func-

tion  that is continuous on an open interval  containing . If  is differen-

tiable on the interval, except possibly at  then () can be classified as follows.

1. If  0() changes from negative to positive at  then  has a relative

minimum at ( ())
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2. If  0() changes from positive to negative at  then  has a relative

maximum at ( ())

3. If  0() is positive on both sides of  or negative on both sides of  then
() is neither a relative minimum nor relative maximum (see Example

7.15).

Proof. Assume that  0() changes from negative to positive at  Then there

exist  and  in such that

 0()  0 for all  in ( )

and

 0()  0 for all  in ( )

By Theorem 7.11,  is decreasing on [ ] and increasing on [ ] So, is a

minimum of on the open interval ( ) and, consequently, a relative minimum

of  This proves the first case of the theorem. The second case can be proved

in a similar way.

Example 7.17 Use the first derivative test to find the relative extrema of

() =
1

2
− sin on the interval (0 2).

Solution: Note that () is continuous on the interval (0 2) We have

 0() =
1

2
− cos. The critical numbers are the solutions to the trigonometric

equation cos =
1

2
on the interval (0 2), which are 3 and 53 Because

there are no points for which  0() does not exist, you can conclude that
 = 3 and  = 53 are the only critical numbers. The table summarizes

the testing of the three intervals determined by these two critical numbers.

Interval (0 3) (3 53) (53 2)

Test Value  = 4  =   = 74

Sign of  0()  0(4)  0  0()  0  0(74)  0
Conclusion Decreasing Increasing Decreasing

By applying the First Derivative Test, you can conclude that has a relative

minimum at the point where

 =


3

and a relative maximum at the point where

 =
5

3
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Fig. 7.16. A relative minimum occurs where  changes from decreasing to increasing,

and a relative maximum occurs where  changes from increasing to decreasing.

as shown in Figure 7.16. ¤

Example 7.18 Analyze the critical points and the increase/decrease behavior

of () = cos2 + sin in (0 )

Solution: First, find the critical points:

 0() = −2 cos sin+ cos = (cos)(1− 2 sin) = 0

implies

cos = 0 or sin =
1

2


The critical points are 6 2 and 56 . They divide (0 ) into four

intervals: ³
0


6

´

³
6



2

´


µ


2

5

6

¶


µ
5

6
 

¶


We determine the sign of  0 by evaluating  0 at a test point inside each interval.
Since



6
≈ 052



2
≈ 157

5

6
≈ 262 and  ≈ 314
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Fig. 7.17. Graph of () = cos2 + sin and its derivative.

we can use the test points shown in the following table:

Interval
¡
0 
6

¢ ¡

6
 
2

¢ ¡

2
 5
6

¢ ¡
5
6
 
¢

Test Value  0(05) ≈ 004  0(1) ≈ −037  0(2) ≈ 034  0(3) ≈ −071
Sign of  0() + − + −
Conclusion Increasing Decreasing Increasing Decreasing

Now apply the First Derivative Test:

• Local max at  = 
6
and  = 5

6
because  0 changes from + to −

• Local min at  = 
2
because  0 changes from − to +

The behavior of () and  0() is reflected in the graphs in Figure 7.17. ¤
Note that in Examples 7.17 and 7.18 the given functions are differentiable

on the entire domain. For such functions, the only critical numbers are those

for which  0() = 0 Example 7.19 concerns a function that has two types of
critical numbers—those for which it is and those for which it is not differen-

tiable.

Example 7.19 The function () = 253 + 523 is defined and continuous

for all real . The derivative of  is given by

 0() =
10

3 3
√

+
10

3

2
3 =

10

3 3
√

(+ 1)  6= 0
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Fig. 7.18. Function () = 253 + 523

Since  0(−1) = 0 and  0(0) does not exist, the critical points are −1 and 0.
The sign of  0 is recorded in the table below.

Interval (−∞−1) (−1 0) (0∞)
Test Value  = −2  = −05  = 1

Sign of  0()  0(−2) = 5
3
2
2
3  0  0(−05) ≈ −21  0  0(1) = 20

3
 0

Conclusion Increasing Decreasing Increasing

In this case (−1) = 3 is a local maximum and (0) = 0 is a local minimum.

The graph appears in Figure 7.18. ¤

Remark 7.20 Note that the first-derivative test can be used at  only if  is

continuous at . The function

() =

(
1 + 2,  ≤ 1
5−    1

(Figure 7.19) has no derivative at  = 1. Therefore 1 is a critical point. While

it is true that  0()  0 for   1 and ()  0 for   1, it does not follow

that (1) is a local maximum. The function  is discontinuous at  = 1 and

the first-derivative test does not apply.
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Fig. 7.19. The graph of () =

(
1 + 2,  ≤ 1
5−    1

7.5 Concavity and the Second Derivative Test

You have already seen that locating the intervals in which a function increases

or decreases helps to describe its graph. In this section, you will see how locat-

ing the intervals in which  0 increases or decreases can be used to determine
where the graph of  is curving upward or curving downward.

Definition 7.21 A differentiable function  on some interval  is said to be

concave up if  0 is increasing and concave down if  0 is decreasing. If  0 is
constant, then the function has no concavity. Points where a function changes

concavity are called inflection point.

To visualize the idea of concavity using the first derivative, consider the

tangent line at a point. Recall that the slope of the tangent line is precisely the

derivative. As you move along an interval, if the slope of the line is increasing,

then  0 is increasing and so the function is concave up. Similarly, if the slope
of the line is decreasing, then  0 is decreasing and so the function is concave
down. In Figure 7.20, the tangent line at  = ( ()) is drawn in red. The

tangent line at (+ 15 (+ 15)) is denoted by a dashed blue line.

If  0 never changes sign twice in an interval 15 units wide or smaller, as is
the case in example considered by this figure, then whenever the blue line has

a larger slope than the red line, the derivative is increasing from  to + 15

and the function is concave up on that interval. Likewise, whenever the blue
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Fig. 7.20. Function () =
5√
1 + 2

is concave up around 1 = (−2 −447214) and
concave down around 2 = (2 447214) The red line is the tangent to the curve at

12 and the dashed blue line is the tangent to the curve a little to the right of 12.

line has a smaller slope than the red line, the derivative is decreasing from 

to + 15 and the function is concave down on that interval.

In practice, we use the second derivative test to check concavity. The Second

Derivative Test says that a function  is concave up when  00  0 and concave
down when  00  0. This follows directly from the definition as the  is concave
up when  0 is increasing, and  0 is increasing when its derivative  00 is positive.
Similarly  is concave down when  0 is decreasing, which occurs when  00  0.
To apply this test, locate the -values at which  00() = 0 or  00() does not
exist. Second, use these -values to determine test intervals. Finally, test the

sign of in each of the test intervals.

There is a convenient test for relative extrema that is based on the following

geometric observation:

A function  has a relative maximum at a stationary point if the graph

of  is concave down on an open interval containing that point, and it has a

relative minimum if it is concave up. Now we can state this as a theorem.

Theorem 7.22 (Second Derivative Test for extrema) Suppose that  is

twice differentiable at the point 0

a. If  0(0) = 0 and  00(0)  0, then  has a relative minimum at 0.

b. If  0(0) = 0 and  00(0)  0, then  has a relative maximum at 0.
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c. If  0(0) = 0 and  00(0) = 0, then the test is inconclusive; that is,  may
have a relative maximum, a relative minimum, or neither at 0.

Proof. We will prove parts (a) and (c) and leave part (b) as an exercise.

a. We are given that  0(0) = 0 and  00(0)  0, and we want to show that

 has a relative minimum at 0. Expressing 
00(0) as a limit and using

the two given conditions we obtain

 00(0) = lim
→∞

 0()−  0(0)
− 0

= lim
→∞

 0()
− 0

 0

This implies that for  sufficiently close to but different from 0 we have

 0()
− 0

 0 (7.1)

Thus, there is an open interval extending left from 0 and an open in-

terval extending right from 0 on which (7.1) holds. On the open in-

terval extending left the denominator in (7.1) is negative, so  0()  0,

and on the open interval extending right the denominator is positive,

so  0()  0. It now follows from part (1) of the first derivative test

(Theorem 7.16) that  has a relative minimum at 0.

c. To prove this part of the theorem we need only provide functions for which

 0(0) = 0 and  00(0) = 0 at some point 0, but with one having

a relative minimum at 0, one having a relative maximum at 0, and

one having neither at 0. We leave it as an exercise for you to show

that three such functions are () = 4 (relative minimum at  = 0),

() = −4 (relative maximum at  = 0), and () = 3 (neither a

relative maximum nor a relative minimum at 0).

Example 7.23 Find the relative extrema of () = 35 − 53.

Solution: We have

 0() = 154 − 152 = 152 (− 1) (+ 1)

 00() = 603 − 30 = 30 ¡22 − 1¢
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Fig. 7.21. The graph of () = 35 − 53

Solving  0() = 0 yields the stationary points  = 0  = −1 and  = 1. As

shown in the following table, we can conclude from the second derivative test

that  has a relative maximum at  = −1 and a relative minimum at  = 1.

Stationary point 30
¡
22 − 1¢  00() Second derivative test

 = −1 −30 −  has a relative maximum

 = 0 0 0 Inconclusive

 = 1 30 +  has a relative minimum

The test is inconclusive at  = 0, so we will try the first derivative test at that

point. A sign analysis of  0 is given in the following table:

Interval (−1 0) (0−1)
Test Value  = −05  = 05

Sign of  0()  0(−05)  0  0(05)  0
Conclusion Decreasing Decreasing

Since there is no sign change in  0 at  = 0, there is neither a relative maximum
nor a relative minimum at that point. It is a point of inflection. All of this is

consistent with the graph of  shown in Figure 7.21. ¤

Remark 7.24 The second derivative test for extrema is often easier to apply

than the first derivative test. However, the first derivative test can be used at

any critical point of a continuous function, while the second derivative test

applies only at stationary points where the second derivative exists.
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Fig. 7.22. The graph of () = 0015 − 00154 − 0213 + 022 + 05 − 05, and
up to four of its derivatives.

Example 7.25 This Example displays (Figure ) the graph of the fifth-degree

polynomial, () = 0015 − 00154 − 0213 + 022 + 05 − 05, and up
to four of its derivatives. As you move across, note how when the function

(blue curve) goes down, the first derivative (orange) is below the  axis, and

when the function has a maximum or minimum the first derivative crosses

the  axis. Check how the second derivative (green) shows the concavity of the

function. Why is the fourth derivative a straight line?

7.6 Review exercises: Chapter
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8

Sketching graphs

In many problems, the properties of interest in the graph of a function are:

• -intercepts and -intercepts,

• Symmetry,
• Domain and range,
• Continuity,
• Vertical asymptotes,
• Differentiability,
• Relative extrema,
• Concavity,
• Points of inflection,
• Horizontal asymptotes,
• Infinite limits at infinity.
• Periodicity.
• Cusps.

Some of these properties may not be relevant in certain cases; for example,

asymptotes are characteristic of rational functions but not of polynomials, and

periodicity is characteristic of trigonometric functions but not of polynomial or

rational functions. Thus, when analyzing the graph of a function  , it helps to

know something about the general properties of the family to which it belongs.

In a given problem you will usually have a definite objective for your analysis

of a graph. For example, you may be interested in showing all of the important

characteristics of the function, you may only be interested in the behavior of

the graph as  → ∞ or as  → −∞ , or you may be interested in some

specific feature such as a particular inflection point. Thus, your objectives in

the problem will dictate those characteristics on which you want to focus.

Moreover, when you are sketching the graph of a function, either by hand or

with a graphing utility, remember that normally you cannot show the entire

graph. The decision as to which part of the graph you choose to show is often

crucial.

Here we will show how you can use calculus to prepare graphs (on example

of rational functions.)



206 8. Sketching graphs

Fig. 8.1. Roots of polynomials with different multiplicities.

8.1 Geometric implications of multiplicity

Our goal in this section is to outline a general procedure that can be used

to analyze and graph polynomials in the vicinity of its roots. For example, it

would be nice to know what property of the polynomial produce the inflection

point and horizontal tangent for the rational functions.

Recall that a root  =  of a polynomial () has multiplicity  if (− )

divides () but ( − )+1 does not. A root of multiplicity 1 is called a

simple root. Figure 8.1 and the following theorem show that the behavior of

a polynomial in the vicinity of a real root is determined by the multiplicity of

that root (we omit the proof ).

Theorem 8.1 (The geometric implications of multiplicity)

Suppose that () is a polynomial with a root of multiplicity  at  = .

a) If  is even, then the graph of  = () is tangent to the -axis at  = ,

does not cross the -axis there, and does not have an inflection point

there.

b) If  is odd and greater than 1, then the graph is tangent to the -axis at

 = , crosses the -axis there, and also has an inflection point there.

c) If  = 1 (so that the root is simple), then the graph is not tangent to the

-axis at  = , crosses the -axis there, and may or may not have an

inflection point there.
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8.2 Graphing rational functions

Recall that a rational function is a function of the form () =  ()() in

which  () and () are polynomials. Graphs of rational functions are more

complicated than those of polynomials because of the possibility of asymp-

totes and discontinuities. If  () and () have no common factors, then the

information obtained in the following steps will usually be sufficient to obtain

an accurate sketch of the graph of a rational function.

Graphing a Rational Function () =  ()()

(if  () and () have no Common Factors)

1. (symmetries). Determine whether there is symmetry about the -axis

or the origin.

2. (x- and y-intercepts). Find the - and -intercepts.

3. (vertical asymptotes). Find the values of  for which () = 0. The

graph has a vertical asymptote at each such value.

4. (sign of f(x)). The only places where () can change sign are at the

-intercepts or vertical asymptotes. Mark the points on the -axis at

which these occur and calculate a sample value of () in each of the

open intervals determined by these points. This will tell you whether

() is positive or negative over that interval.

5. (end behavior). Determine the end behavior of the graph by computing

the limits of () as →∞ and as → −∞. If either limit has a finite
value , then the line  =  is a horizontal asymptote.

6. (derivatives). Find  0() and  00().

7. (conclusions and graph). Analyze the sign changes of  0() and  00()
to determine the intervals where () is increasing, decreasing, concave

up, and concave down. Determine the locations of all stationary (i.e. crit-

ical) points, relative extrema, and inflection points. Use the sign analysis

of () to determine the behavior of the graph in the vicinity of the ver-

tical asymptotes. Sketch a graph of  that exhibits these conclusions.

Example 8.2 Sketch a graph of the function

() =
22 − 8
2 − 16 (8.1)

and identify the locations of the intercepts, relative extrema, inflection points,

and asymptotes.
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Table 8.1. Sign analysis of () = 22−8
2−16

Interval Test point Value of  Sign of 

(−∞−4) −5 143 +

(−4−2) −3 −107 −
(−2 2) 0 12 +

(2 4) 3 −107 −
(4+∞) 5 143 +

Solution: The numerator and denominator have no common factors, so

we will use the procedure just outlined.

1. Symmetries: Replacing  by − does not change the equation, so the
graph is symmetric about the -axis.

2. - and -intercepts : Setting  = 0 yields the -intercepts  = −2 and
 = 2. Setting  = 0 yields the -intercept  = 12

3. Vertical asymptotes: We observed above that the numerator and denom-

inator of  have no common factors, so the graph has vertical asymptotes

at the points where the denominator of  is zero, namely, at  = −4 and
 = 4.

4. Sign of  : The set of points where -intercepts or vertical asymptotes

occur is {−4−2 2 4}. These points divide the -axis into the open in-
tervals

(−∞−4) (−4−2) (−2 2) (2 4) (4+∞)

We can find the sign of  on each interval by choosing an arbitrary test

point in the interval and evaluating  = () at the test point (Table

8.1). This analysis is summarized on the first line of Table 8.2.

5. End behavior : The limits

lim
→∞

22 − 8
2 − 16 = lim

→∞
2− 8

2

1− 16
2

= 2

lim
→−∞

22 − 8
2 − 16 = lim

→−∞
2− 8

2

1− 16
2

= 2

yield the horizontal asymptote  = 2.
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Table 8.2. Graphs for sign analysis of () 0() and 00()

a) sign of ()

b) sign of 0()

c) sign of 00()

6. Derivatives:

0() = 4


2 − 16 − 2


(2 − 16)2
¡
22 − 8¢ = −48 

(2 − 16)2

00() =
48

(2 − 16)3
¡
32 + 16

¢
(verify)

7. Conclusions and graph:

• The sign analysis of  in Table 8.2 reveals the behavior of the graph
in the vicinity of the vertical asymptotes: The graph increases with-

out bound as → −4− and decreases without bound as → −4+;
and the graph decreases without bound as  → 4− and increases
without bound as → 4+ (Table 8.2).

• The sign analysis of 0() in Table 8.2 shows that the graph is
increasing to the left of  = 0 and is decreasing to the right of

 = 0. Thus, there is a relative maximum at the stationary point

 = 0. There are no relative minima.

• The sign analysis of 00() in Table 8.2 shows that the graph is
concave up to the left of  = −4, is concave down between  = −4
and  = 4, and is concave up to the right of  = 4. There are no

inflection points.

The graph is shown in Figure 8.2
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Fig. 8.2. The graph of the function () = 22−8
2−16 

Remark 8.3 The procedure we stated for graphing a rational function ()()

applies only if the polynomials  () and () have no common factors. How

would you find the graph if those polynomials have common factors?

Example 8.4 Sketch a graph of

() =
2 − 1
3

(8.2)

and identify the locations of all asymptotes, intercepts, relative extrema, and

inflection points.

Solution: The numerator and denominator have no common factors, so

we will use the procedure outlined previously.

1. Symmetries: Replacing  by − and  by − yields an equation that
simplifies to the original equation, so the graph is symmetric about the

origin.

2. - and -intercepts : Setting  = 0 yields the -intercepts  = −1 and
 = 1. Setting  = 0 leads to a division by zero, so there is no -intercept.

3. Vertical asymptotes: Setting 3 = 0 yields the solution  = 0. This is

not a root of 2 − 1, so  = 0 is a vertical asymptote.
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Table 8.3. Sign analysis of () = 2−1
3

Interval Test point Value of  Sign of 

(−∞−1) −2 −38 −
(−1 0) −1

2
6 +

(0 1) 1
2

−6 −
(1+∞) 2 38 +

4. Sign of  : The set of points where -intercepts or vertical asymptotes

occur is {−1 0 1}. These points divide the -axis into the open intervals
(−∞−1) (−1 0) (0 1) (1+∞)

We can find the sign of  on each interval by choosing an arbitrary test

point in the interval and evaluating  = () at the test point (Table

8.1). This analysis is summarized on the first line of Table 8.3

5. End behavior : The limits

lim
→∞

2 − 1
3

= lim
→∞

µ
1


− 1

3

¶
= 0

lim
→−∞

22 − 8
2 − 16 = lim

→−∞

µ
1


− 1

3

¶
= 0

yield the horizontal asymptote  = 0.

6. Derivatives:

0() = − 1
4

¡
2 − 3¢ = − 1

4

³
−
√
3
´³

+
√
3
´

00() =
2

5

¡
2 − 6¢ = 2

5

³
−
√
6
´³

+
√
6
´

(verify)

7. Conclusions and graph:

• The sign analysis of  in Table 8.4 reveals the behavior of the graph
in the vicinity of the vertical asymptote  = 0 The graph increases

without bound as → 0− and decreases without bound as → 0+;

(see Figure 8.3).

• The sign analysis of 0() in Table 8.4 shows that there is a relative
minimum at  = −√3 and a relative maximum at  =

√
3

• The sign analysis of 00() in Table 8.4 shows that the graph shows
that the graph changes concavity at the vertical asymptote  = 0

and that there are inflection points at  = −√6 and  =
√
6

The graph is shown in Figure 8.3
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Table 8.4. Graphs for sign analysis of () 0() and 00()

a) sign of ()

b) sign of 0()

c) sign of 00()

Fig. 8.3. The graph of the function () = 2−1
3
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8.3 Rational functions with oblique or curvilinear
asymptotes

In the rational functions of Examples 8.2 and 8.4, the degree of the numerator

did not exceed the degree of the denominator, and the asymptotes were either

vertical or horizontal. If the numerator of a rational function has greater degree

than the denominator, then other kinds of “asymptotes” are possible. For

example, consider the rational functions

() =
2 + 1


and () =

3 − 2 − 8
− 1 (8.3)

By division we can rewrite these as

() = +
1


and () = 2 − 8

− 1 

Since the second terms both approach 0 as → +∞ or as → −∞ , it follows

that

(()− )→ 0 as → +∞ or as → −∞
(()− 2)→ 0 as → +∞ or as → −∞

Geometrically, this means that the graph of  = () eventually gets closer

and closer to the line  =  as  → +∞ or as  → −∞. The line  = 

is called an oblique or slant asymptote of  . Similarly, the graph of  = ()

eventually gets closer and closer to the parabola  = 2 as  → +∞ or as

→ −∞.. The parabola is called a curvilinear asymptote of . The graphs of
the functions in (8.3) are shown in Figures 8.4 and 8.5.
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Fig. 8.4. The graph of the function () = 2−1
3



Fig. 8.5. The graph of the function () = 3−2−8
−1 



9

Optimization and linearization

We’re now going to look at two practical applications of calculus: optimiza-

tion and linearization. Believe it or not, these techniques are used every day

by engineers, economists, and doctors, for example. Basically, optimization

involves finding the best situation possible, whether that be the cheapest way

to build a bridge without it falling down or something as mundane as finding

the fastest driving route to a specific destination.

Generally such a problem will have the following mathematical form: Find

the largest (or smallest) value of () when  ≤  ≤ . Sometimes  or

 are infinite, but frequently the real world imposes some constraint on the

values that  may have. Such a problem differs in two ways from the local

maximum and minimum problems we encountered when graphing functions:

We are interested only in the function between  and , and we want to know

the largest or smallest value that () takes on, not merely values that are

the largest or smallest in a small subinterval. That is, we seek not a local

maximum or minimum but a global maximum or minimum, sometimes also

called an absolute maximum or minimum.

Any global maximum or minimum must of course be a local maximum or

minimum. If we find all possible local extrema, then the global maximum, if it

exists, must be the largest of the local maxima and the global minimum, if it

exists, must be the smallest of the local minima. We already know where local

extrema can occur: only at those points at which  0() is zero or undefined.
Actually, there are two additional points at which a maximum or minimum

can occur if the endpoints  and  are not infinite, namely, at  and .

On the other hand, linearization is a useful technique for finding approxi-

mate values of hard-to calculate quantities. It can also be used to find approx-

imate values of zeroes of functions; this is called Newton’s method.

9.1 Three types of optimization problems

We shall first discuss the theory, and then look at some serious examples.

Optimization problems are essentially always "word problems", which are also
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called "modeling problems", since we are taking a real-world problem and

modeling it by a pure mathematics problem.

There are three types of optimization problems that we deal with. In all of

them, we assume that we have a continuous function  , whose domain is an

interval , and that  has a finite number of critical points, where  0 is zero
or undefined, on the interior of the interval .

Optimization Case 1: The interval  is a closed, bounded interval

[ ].

In this case, we have a theorem which tells us how to proceed.

Theorem 9.1 The function  attains a global maximum and a global mini-

mum value on . These extreme values are attained at critical points of  (on

the interval ); thus, they are attained either when  = ,  = , or when 

is in the open interval ( ) and  0() = 0 or  0() is undefined. Therefore,
we can find the global extreme values of  by making a table of  and ()

values, where the  values are , , and all of the -coordinates in ( ) where

 0() = 0 or  0() is undefined. Then, we simply look at the () values and
select the largest and smallest ones.

Proof. Proof. This follows immediately from the Extreme Value Theorem,

and other theorems of the previous Chapter.

Remark 9.2 You need to be careful when looking at critical points where

 0() = 0. Frequently, we have a function  that is defined and differentiable

on a larger set than the interval [ ], but physical constraints require that  be

in the closed interval [ ]; so, our function  is actually the function  , re-

stricted to the interval [ ]. This function  is technically a different function

from  , even though the rule specifying them is the same. The danger is that

the formula you derive for the derivative will be  0(), which maybe defined
and equal to zero outside of the interval [ ]. The points where  0() = 0 that
are outside [ ] are not critical points of  , and do not belong in the table of

 and () values that you use to find the maximum and minimum values of

 on [ ].

Example 9.3 Find the extreme values of () = 23 − 32 − 12 on the
interval [0 3].

Solution: We find

 0() = 62 − 6− 12 = 6(2 − − 2) = 6(− 2)(+ 1)
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When does  0() = 0? When  = 2 and when  = −1. However,  = −1
is outside the interval under consideration, and so we ignore it. We find one

critical point,  = 2, of  , inside the open interval (0; 3), and we also have to

check the endpoints of the closed interval.

Thus, we make the small table

 0 0 3

() 2 −20 −9

Therefore, the maximum value of  on the interval [0 3] is 0, which occurs at

the single -coordinate  = 0, and the minimum value of  on the interval

[0 3] is −20, which occurs at the single -coordinate  = 2 ¤
Optimization Case 2: The interval  is not closed and bounded,

but the First or Second Derivative Test applies.

Example 9.4 Suppose that we need to construct an aluminum can that holds

500 cubic centimeters (0 5 liters). The can is required to have the shape of a

right circular cylinder. We assume that the aluminum has some uniform small

thickness, so that it is reasonable to describe the amount of aluminum using

area units. Suppose that the cost per square centimeter of aluminum for the

sides of the can is some constant   0 dollars, while the top and bottom of

the can use aluminum that costs 2 dollars per square centimeter. Find the

dimensions (radius and height) of the can that minimizes the cost.

Solution: Let  denote the radius of the can, and  the height, both in

centimeters. The volume of the can is the area of the base times the height,

i.e., 2; this is required to equal 500. Therefore, we have

2 = 500

This type of equation is known as a constraint, because it implies that  and

 may not vary independently; the allowable (;) pairs are constrained by

the equation. We are trying to minimize  , the total cost of the can in dollars.

The cost of the sides of the can is the area of the sides times the cost per unit

area, i.e., 2 · . The cost of the top and bottom of the can is the area of

the top and bottom times the cost per unit area, i.e., 22 ·2. Thus, the total
cost of the can is

 = 2+ 42

We need a function of one variable to apply our methods; that is, we need to

write  as a function of either  or , but not both. As we mentioned above,

 and  are not allowed to vary independently. So, at this point, we solve the
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constraint equation for , and write  as a function of the single variable .

We find

 =
500

2

and

 () = 4

µ
2 +

250



¶
The domain of this function is all   0.

We calculate the derivative

 0() = −4
µ
250

2
− 2

¶


and see that it equals 0 when
¡
250
2
− 2¢ = 0, i.e., when 2 =

250

2
; this

means that

3 =
125




i.e.,  =
5
3
√

 Hence,  has a single critical point at  =

5
3
√

on the interval

(0∞). The 2nd derivative of  is

 00() = 4
µ
2 +

500

3

¶
which is positive for   0. Thus, the Second Derivative Test tells us that 

attains a global minimum value at  =
5
3
√

.

To find the corresponding height, we go back to

 =
500

2
=

500



µ
5
3
√


¶2 = 20
3
√

= 4

Finally, we conclude that the dimensions of the can that minimize the total

cost of the can are  =
5
3
√

centimeters  = 20

3
√

centimeters, which means

that the height of the can should be twice the diameter of the can. ¤
Optimization Case 3: We are told, or physical reasons imply, that

an extreme value is attained, and there is only one critical point.
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Example 9.5 Find the point on the parabola 2 = 2 that is closest to the

point (1 4).

Solution: The distance between the point ( ) and the point (1 4) is

 =
p
(− 1)2 + ( − 4)2

But if ( ) lies on the parabola, then  = 22, so the expression for 

becomes

 =
p
(22− 1)2 + ( − 4)2

Instead of minimizing , we minimize its square:

2 = () = (22− 1)2 + ( − 4)2
(You should convince yourself that the minimum of  occurs at the same point

as the minimum of 2, but 2 is easier to work with.) Differentiating, we obtain

 0() = 3 − 8
so  0() = 0 when  = 2. Because of the geometric nature of the problem, it’s

obvious that there is a closest point but not a farthest point. The corresponding

value of  is  = 22 = 2. Thus, the point on 2 = 2 closest (1 4) to is (2 2).

¤

9.2 Exemplary optimization problems

In all examples presented below, the challenge is to find an efficient way to

carry out a task, where “efficient” could mean least expensive, most profitable,

least time consuming, or, as you will see, many other measures.
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Fig. 9.1. Optimal rectangle with a perimeter of 40 and a maximal surface area

Example 9.6 Find the rectangle with a perimeter of 40 and a maximal pos-

sible area.

Solution: For a rectangle with a perimeter of 40, the height  is always

20 minus the width . This allows you to reduce the formula for the area,

 = , to  = (20 − ) = 20 − 2. Elementary calculus shows

that this formula is at a maximum when  = 10 (see Figure 9.1).

The condition that  = (20−) is called a constraint. It tells us to consider
only (nonnegative) values of  and  satisfying this equation. It allows us to

reduce the primary equation  =  to one with a single independent

variable. For the physical reasons we can suppose that (additionally)  ≤
20 The quantity that we wish to maximize (or minimize in other cases) is

called the objective function; in this case, the objective function is the product

 = . ¤

Example 9.7 Suppose you want to reach a point  that is located across the

sand from a nearby road (see Figure 9.2). Suppose that the road is straight,

and  is the distance from  to the closest point  on the road. Let  be your

speed on the road, and let , which is less than , be your speed on the sand.

Right now you are at the point , which is a distance a from . At what point

 should you turn off the road and head across the sand in order to minimize

your travel time to ?

Solution: Let  be the distance short of  where you turn off, i.e., the

distance from  to . We want to minimize the total travel time. Recall that

when traveling at constant velocity, time is distance divided by velocity. You
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Fig. 9.2. Minimizing travel time.

travel the distance  at speed , and then the distance  at speed . Since

 = − and, by the Pythagorean theorem,  =
√
2 + 2, the total time

for the trip is

() =
− 


+

√
2 + 2




We want to find the minimum value of  when  is between 0 and . As usual

we set  0() = 0 and solve for :

0 =  0() = −1

+




√
2 + 2


p
2 + 2 = 

2
¡
2 + 2

¢
= 22

Notice that  does not appear in the last expression, but a is not irrele-

vant, since we are interested only in critical values that are in [0 ], and


√
2 − 2 is either in this interval or not. If it is, we can use the second

derivative to test it:

 00() =
2

(2 + 2)32


If the critical value is not in (0 ) it is greater or equal to . In this case the

minimum must occur at one of the endpoints. We can compute(0) = 

+ 




() =

√
2 + 2



but it is difficult to determine which of these is smaller by direct comparison.

If, as is likely in practice, we know the values of    and  then it is easy to
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determine this. With a little cleverness, however, we can determine the mini-

mum in general. We have seen that  00() is always positive, so the derivative
 0() is always increasing. We know that at 

√
2 − 2 the derivative is

zero, so for values of  less than that critical value, the derivative is negative.

This means that (0)  (), so the minimum occurs when  = . So the

upshot is this: If you start farther away from  than 
√
2 − 2 then you

always want to cut across the sand when you are a distance 
√
2 − 2 from

point . If you start closer than this to , you should cut directly across the

sand. With two examples providing some insight, we present a procedure for

solving optimization problems. These guidelines provide a general framework,

but the details may vary depending upon the problem. ¤

Guidelines for solving applied minimum and maximum problems:

1. Identify all given quantities and all quantities to be determined.

2. If possible, make a sketch.

3. Write a primary equation for the quantity to be maximized or minimized.

4. Reduce the primary equation to one with a single independent variable.

This may involve the use of secondary equations relating the independent

variables of the primary equation.

5. Determine the domain of the primary equation.

6. Use calculus to determine the desired maximum or minimum value.

7. Use calculus to verify the answer.

Example 9.8 A manufacturer wants to design an open box with a square base

and a surface area of 108 square inches. What dimensions will produce a box

with maximum volume?
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Solution: Draw the box and label the length of the square base  and the

height . The volume is given by the primary equation  = 2 The surface

area of the open box consists of the bottom and 4 sides: 2 + 4 = 108

We can use this constraint to eliminate the variable in the volume formula as

follows:

4 = 108− 2

 =
108− 2

4


 () = 2 =

µ
108− 2

4

¶
2 = −1

4

¡
2 − 108¢ = 27− 1

4
3

The domain of this function is 0 ≤  ≤ √108. We now use our calculus skills
to find the maximum value of  .

 0() = 27− 3
4
2 = 0

32 = 108

 = 6

The critical number is  = 6 Since  (0) =  (
√
108) = 0  (6) = 108 is the

maximum value on the interval. For  = 6 you obtain  = 3. The maximum

volume is 108 cubic inches, and the dimensions are 6× 6× 3 . Note that you
could have used the first or second derivative tests to verify that 6 gave a

maximum. ¤

Example 9.9 A window in the shape of rectangle capped by a semicircle is

to have perimeter . Choose the radius of the semicircular part so that the

window admits the most light.

Solution: We take the point of view that the window which admits the

most light is the one with maximum area. As in Figure above,we let  be the

radius of the semicircular part and  be the height of the rectangular part.

We want to express the area

 =
1

2
2 + 2

as a function of  alone. To do this, we must express  in terms of .

Since the perimeter is , we have

 = 2+ 2 + 
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Fig. 9.3.

and thus

 =
1

2
[− (2 + )] 

Since  and  represent lengths, these variables must be nonnegative. For both

 and  to be nonnegative, we must have 0 ≤  ≤ (2 + ). The area can

now be expressed in terms of  alone:

() =
1

2
2 + 2

=
1

2
2 + 2 · 1

2
[− (2 + )]

= −
³
2 +



2

´
2

We want to maximize the function

() = −
³
2 +



2

´
2 0 ≤  ≤ (2 + )

The derivative

0() = − 2
µ
1

2
 + 2

¶
= − 4− 

is 0 only at  = (4+ ). Since (0) = [(2 + )] = 0, and since ()  0

for 0    (4+) and ()  0 for (4+)    (2+), the function
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Fig. 9.4. Cone in a sphere ( = 1)

 is maximized by setting  = (4 + ). For the window to have maximum

area, the radius of the semicircular part must be (4 + ). ¤

Optimization problems are difficult because they require formulas from pre-

calculus, such as areas, volumes, and trigonometric relationships. Here is an

example.

Example 9.10 If you fit the largest possible (in volume) cone inside a sphere,

what fraction of the volume of the sphere is occupied by the cone? (Here by

“cone” we mean a right circular cone, i.e., a cone for which the base is per-

pendicular to the axis of symmetry, and for which the cross-section cut per-

pendicular to the axis of symmetry at any point is a circle- see Figure 9.4)

Solution: Let  be the radius of the sphere, and let  and  be the base

radius and height of the cone inside the sphere. What we want to maximize

is the volume of the cone: 23. Here  is a fixed value, but  and  can

vary. Namely, we could choose  to be as large as possible–equal to –by

taking the height equal to ; or we could make the cone’s height  larger at

the expense of making  a little less than . See the cross-section depicted in
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Fig. 9.5. Cone in a sphere (cross-section).

Figure 9.5. We have situated the picture in a convenient way relative to the 

and  axes, namely, with the center of the sphere at the origin and the vertex

of the cone at the far left on the -axis.Notice that the objective function we

want to maximize, 23, depends on two variables. This is frequently the

case, but often the two variables are related in some way so that “really” there

is only one variable. So our next step is to find the relationship and use it to

solve for one of the variables in terms of the other, so as to have a function of

only one variable to maximize. In this problem, the condition is apparent in

the figure: the upper corner of the triangle, whose coordinates are (− ),

must be on the circle of radius . That is,

(−)2 + 2 = 2

We can solve for  in terms of  or for  in terms of . Either involves taking

a square root, but we notice that the volume function contains 2, not  by

itself, so it is easiest to solve for 2 directly: 2 = 2 − ( − )2. Then we

substitute the result into 23:

 () = (2 − (−)2)3

=
2

3
2 − 1

3
3

We want to maximize  () when  is between 0 and 2. Now we solve

0 =  0() = −2 + (43)
getting  = 0 or  = 43. We compute  (0) =  (2) = 0 and  (43) =

(3281)3. The maximum is the latter; since the volume of the sphere is
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Fig. 9.6.

(43)3, the fraction of the sphere occupied by the cone is

(3281)3

(43)3
=
8

27
≈ 30% ¤

9.3 Linearization

The graph 9.6 shows the curve  = () and the linearization  = (), which

is the tangent line to the curve at  = . We want to estimate the value

of ( + ∆). That’s the height of the point  in the above picture. As an

approximate value, we’re actually using ( +∆), which is the height of 

in the picture. The difference between the two quantities is labeled “error”.

Here’s the basic strategy for estimating, or approximating, a nasty number:

1. Write down the main formula

() ≈ () = () +  0()(− )

2. Choose a function  , and a number  such that the nasty number is

equal to (). Also, choose a close to  such that () can easily be

computed.

3. Differentiate  to find  0.
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4. In the above formula, replace  and  0 by the actual functions, and 

by the actual number you’ve chosen.

5. Finally, plug in the value of  from step 2 above. Also note that the

differential  is the quantity  0()(− ).

Remark 9.11 We refer to  =  as the center of the linearization. Notice

that  = () is the equation of the tangent line to the graph of () at  = 

(see Figure 9.6)

Example 9.12 How would you estimate sin(1130) using linearization?

Solution: Start with the standard formula

() ≈ () = () +  0()(− )

We need to take the sine of something, so let’s set () = sin(). We are

interested in what happens when  = 1130. Now, we need some number

a which is close to 1130, such that () is nice. Of course, () is just

sin(). What number close to 1130 has a manageable sine? How about

1030? After all, that’s just 3, and we certainly understand sin(3). So,

set  = 3.

We’ve completed the first two steps. Moving on to the third step, we find

that  0() = cos(), so the linearization formula becomes

() ≈ () = sin
³
3

´
+ cos

³
3

´
(− 

3
)

Since () = sin(), this simplifies to

sin() ≈
1

2
− 1

6
 +

1

2

√
3

Finally, put  = 1130 to get

sin(
11

30
) ≈

11

60
 − 1

6
 +

1

2

√
3 =

1

60
 +

1

2

√
3 = 091839

whereas the exact value sin(11
30
) = 091355

Remark 9.13 Sometimes we compute the relative percentage error, which is

often more important than the error itself. By definition,

   =
¯̄̄



 

¯̄̄
× 100% (9.1)

In the example 9.12

   =

¯̄̄̄
091355− 091839

091355

¯̄̄̄
× 100% = 05298%
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The next example illustrates the fact, that the linearization can be successful

only when the function  is differentiable.

Example 9.14 The “differentiation microscope” lets you graphically explore

if a function is differentiable at a given point 0. If you "zoom in" at any point

0 and you see that in a very close neighborhood of 0 the function looks like

a linear function, then the function () is differentiable at 0 (images a-b)

and, otherwise not (images c-d). Can you find points where () = |2+ | is
differentiable and points where otherwise it is not?

a) b)

c) d)
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Fig. 9.7. One step of Newton’s Method. Starting with 0, the tangent line to

the curve  = () is drawn. The intersection point with the -axis is 1, the next

approximation to the root.

9.4 Newton’s method

Suppose you have a differentiable function (), and you want to find as

accurately as possible where it crosses the -axis; in other words, you want to

solve () = 0. We were able to find the roots of functions using a “divide

and conquer” (i.e. bisection) technique: start with an interval [ ] for which

()  0 and ()  0. If (( + )2) is positive, then use the interval

[ (+ )2] otherwise[(+ )2 ]. After  steps, we are (− )2 close to

the root.

If the function  is differentiable, we can do much better. Suppose you

know of no way to find an exact solution by any algebraic procedure, but

you are able to use an approximation, provided it can be made quite close to

the true value. Newton’s method is a way to find a solution to the equation

to as many decimal places as you want. It is what is called an “iterative

procedure,” meaning that it can be repeated again and again to get an answer

of greater and greater accuracy. Iterative procedures like Newton’s method

are well suited to programming for a computer. Newton’s method uses the

fact that the tangent line to a curve is a good approximation to the curve

near the point of tangency. To find a root of () = 0, a starting point 0 is

given, and the tangent line to the function  at 0 is drawn. The tangent line

will approximately follow the function down to the -axis toward the root.

The intersection point of the line with the -axis is an approximate root, but

probably not exact if  curves. Therefore, this step is iterated.
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From the geometric picture, we can develop an algebraic formula for New-

ton’s Method. The tangent line at 0 has slope given by the derivative 
0(0)

One point on the tangent line is (0 (0)). The point-slope formula for the

equation of a line is

 − (0) =  0(0)(− 0)

so that looking for the intersection point of the tangent line with the -axis is

the same as substituting  = 0 in the line:

 0(0)(− 0) = 0− (0)

− 0 = − (0)

 0(0)

 = 0 − (0)

 0(0)
=  (0) where  () = − ()

 0()


Solving for  gives an approximation for the root, which we call 1 =  (0).

Next, the entire process is repeated, beginning with 1, to produce 2 =  (1),

and so on, yielding the following iterative formula:

0 = starting point

+1 =  − ()

 0()
:=  () for  = 0 1 2 

So, Newton’s method is the process of applying map  again and again until

we are sufficiently close to the root. If  is a root such that  0() 6= 0, and 0
is close enough to , then 1 =  (0), 2 =  ( (0)) converges to the root .

It is an extremely fast method to find the root of a function.

1. If () = + , we reach the root in one step.

2. If () = 2 then  () =  − 2(2) = 2. We get quite fast to the

root 0 but not as fast as the method promises. Indeed, the root 0 is also

a critical point of  . This slows us down.

3. If () = 2 then  () =  − 2(2) = 2. We get quite fast to the

root 0 but not as fast as the method promises. Indeed, the root 0 is also

a critical point of  . This slows us down.

4. The Newton method converges extremely fast to a root () = 0 if

 0() 6= 0 if we start sufficiently close to the root.
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Fig. 9.8. When 0 = 6 the first three iterations of the Newton Method for

() = cos() are 60 262161 0875009 171012

Figure 9.8 illustrates how the Newton method works when () = cos()

and 0 = 60

Newton used this method to find the roots of polynomials. It is amazingly

fast: Starting 01 close to the point, we have after one step 001 after 2 steps

00001 after 3 steps 000000001 and after 4 steps 00000000000000001.

In 10 steps we can get a 210 = 1024 digits accuracy. Having a fast method to

compute roots is useful. For example in computer graphics, where things can

not be fast enough. Also in number theory, when working with integers having

thousands of digits the Newton method can help. There is much theoretical

use of the method. It goes so far as to explain stability of planetary motion or

stability of plasma in fusion reactors.

If we have several roots, and we start at some point, to which root will

the Newton method converge? Does it at all converge? This is an interesting

question. It is also historically intriguing because it is one of the first cases,

where ”chaos” was observed at the end of the 19’th century.

Example 9.15 Find the Newton map in the case () = 4 − 1. Solution
 () = − (

4 − 1)
(43)

. If we look for roots in the complex like for () = 4− 1
which has 4 roots in the complex plane, the “basin of attraction” of each of the

roots is a complicated set which we call the Newton fractal. See Figure 9.9
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Fig. 9.9. Newton fractal on 4 − 1

9.4.1 Using Newton’s Method to Estimate 

For those of us who enjoy mathematical challenges, estimating irrational num-

bers like , , and
√
2 to a large number - no, to a very large number of decimal

places - is an exercise of enjoyment. Let’s see if we can crash the computer! To

estimate , we will use Newton’s method to estimate the zero of the function

() = tan() , for 2    32. As you know already, the exact answer

is .

We set up Newton’s iteration scheme thus. We have set the precision at 50

digits for the estimate of the zero.

Using the graph of the function, we specify a starting value of 0 = 3 for the

iterations. We iterate until two consecutive calculated values of  are equal to

the precision specified by digits. The symbol  is used to count the number of

iterations required to achieve the specified precision.
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iteration approximate root

0 30

1 31425465430742778052956354105339134932260922849018

2 31415926533004768154498857717199130966435931692136

3 31415926535897932384626433832875751974432098712017

4 31415926535897932384626433832795028841971693993751

5 31415926535897932384626433832795028841971693993751

All digits are correct!

9.4.2 Using Newton’s Method to Estimate
√
2

Lets compute
√
2 to 12 digits accuracyWe want to find a root () = 2− 2.

The Newton

map is  () = − (2 − 2)(2) = 1
2

¡
+ 2



¢
. Lets start with 0 = 10

 (1) = 32

 (32) = 1712

 (1712) = 577408

 (577408) = 665857470832

• This is already 16·10−12 close to the real root! 12 digits, by hand!
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Integrals

We are now at a critical point in the calculus story. Many would argue that

this chapter is the cornerstone of calculus because it explains the relationship

between the two processes of calculus: differentiation and integration. We be-

gin by explaining why finding the area of regions bounded by the graphs of

functions is such an important problem in calculus. Then you will see how

antiderivatives lead to definite integrals, which are used to solve this problem.

But there is more to the story. You will also see the remarkable connection

between derivatives and integrals, which is expressed in the Fundamental

Theorem of Calculus. In this chapter, we develop key properties of definite

integrals, investigate a few of their many applications, and present the first of

several powerful techniques for evaluating definite integrals.

10.1 Antiderivatives and Basic Integration Rules

Suppose you were asked to find a function  whose derivative is () = 43.

From your knowledge of derivatives, you would probably say that

 () = 4 because




£
4
¤
= 43

The function  is an antiderivative of 

Definition 10.1 (of antiderivative) A function  is an antiderivative of 

on an interval  if for  0() = () all  in .

Note that  is called an antiderivative of  rather than the antiderivative

of  . To see why, observe that

1() = 4 2() = 4 − 7 and 3() = 4 + 11

are all antiderivatives of () = 43 In fact, for any constant  the function

given by  () = 4 +  is an antiderivative of 

Theorem 10.2 (Representation of antiderivatives) If  is an antideriv-

ative of  on an interval  then  is an antiderivative of  on the interval 
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if and only if  is of the form () =  () +  for all  in  where  is a

constant.

Proof. The proof of Theorem 10.2 in one direction is straightforward. That

is, if () =  () + ,  0() = () and  is a constant, then

0() =



[ () + ] =  0() + 0 = ()

To prove this theorem in the other direction, assume that is an antiderivative

of  . Define a function  such that

() = () =  ()

For any two points  and  (  ) in the interval,  is continuous on and

differentiable on [ ] By the Mean value theorem,

 0() =
()−()

− 

for some  in ( ) However  0() = 0, so () = () Because  and  are

arbitrary points in the interval, you know that  is a constant function  So,

()−  () =  and it follows that () =  () + 

The expression
R
() is read as the antiderivative  of with respect to 

So, the differential  serves to identify  as the variable of integration. The

term indefinite integral is a synonym for antiderivative.

Notation: Z
() = ()+ 

1.  is the integrand .

2.  indicates that the variable of integration is  .

3.  is an antiderivative (or integral) of  .

4.  is the constant of integration.

5. The expression is read as “the antiderivative of  with respect to  .”

Basic Integration Rules Based on Derivative Formulas:

1.
R
0 = 

2.
R
 = + 
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3.
R
(()± ())  =

R
()± R ()

4.
R
 = +1

+1
+   6= 1

5.
R
cos = sin+ 

6.
R
sin = − cos+ 

7.
R
sec2  = tan+

Summary: Antidifferentiation (or integration) is the inverse of differentia-

tion. The antiderivative of () = 43 is () = 4+ because the derivative

of  is  .

Remark 10.3

• The power rule R  = +1

+1
+  is not valid for  = −1. We do not

yet know how to find the antiderivative
R 1

 We will return to this

question when we study logarithms.

• Finding antiderivatives is more difficult than calculating derivatives, but
remember that you can always check your answer to an integral question

by differentiating the result.

• Some functions do not have antiderivatives among the functions that
we use in elementary calculus. For example, you cannot solve

R
−

2
.

That is, there is no function  (among the functions in elementary cal-

culus) whose derivative is −
2
.

Example 10.4 (Finding antiderivatives.) We will find simple indefinite

integrals:R
(2− 64 + 5) = −6

5
5 + 2 + 5+ R ¡

3 + cos+ 4
¢
 = 4+ sin+ 1

4
4 + R

(sin+ cos+ 2)  = 2− cos+ sin+ R + 1√


 =
R µ √


+

1√


¶
 =

R ¡
12 + −12

¢
 = 2

3

√
 (+ 3) + 

R 2 + 1

2
 =

1



¡
2 − 1¢+ 

R
( − 3)√ = 2

5

3
2 ( − 5) + 
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Fig. 10.1. Slope field and several solutions of the differential equation 10.1.

You can check that these are correct by differentiating the answers. ¤

Example 10.5 (Solving a simple differential equation) Solve the differ-

ential equation

0() =
1

2
   0 (10.1)

that satisfies the initial condition (1) = 0

Solution:

() =

Z
1

2
 =

Z
−2 =

−1

−1 +  = −1

+ 

We can determine the constant of integration using the initial condition.

(1) = −1
1
+ = 0

Thus,  = 1, and the particular solution to the differential equation is () =

−1

+ 1. Notice that the general solution of the differential equation has a

constant of integration and represents a family of curves in the plane. The

particular solution is one of these curves (see Figure 10.1).
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Fig. 10.2. Visible trajectory () = 20− 52

Example 10.6 Galileo measured free fall, a motion with constant accelera-

tion. Assume () is the height of the ball at time . Assume the ball has zero

velocity initially and is located at height (0) = 20. We know that the veloc-

ity is () is the derivative of () and the acceleration () is constant equal

to −10. So, () = −10 +  is the antiderivative of . By looking at  at

time  = 0 we see that = (0) is the initial velocity and so zero. We know

now () = −10. We need now to compute the anti derivative of (). This is
() = −1022+. Comparing  = 0 shows  = 20. Now () = 20−52. The
graph of  is a parabola. If we give the ball an additional horizontal velocity,

such that time is equal to  then () = 20− 52 is the visible trajectory (see
Figure 10.2). We see that jumping from 20 meters leads to a fall which lasts

2 seconds.

10.2 The area problem and the definite integral

In Figure 10.3 you can see a region Ω bounded above by the graph of a non-

negative continuous function  , bounded below by the -axis, bounded on

the left by the line  = , and bounded on the right by the line  = . The

question before us is this: What number, if any, should be called the area of
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Fig. 10.3. What number should be called the area of Ω?.

Ω? Calculus provides the answer, and we begin by looking at a technique for

estimating the area of Ω by a summation process called Riemann sums.

Definition 10.7 (of the area of a region in the plane) Let  be contin-

uous and nonnegative on the interval [ ]. Partition the interval into  equal

subintervals of length ∆ =
− 


 0 =  1 = +∆   = +∆ = 

The area of the region bounded by  , the -axis, and the vertical lines  = 

and  =  is

 = lim
→∞

X
=1

()∆ −1 ≤  ≤  (10.2)

provided this limit exists and is equal independently on the choice of   =

1   (−1 ≤  ≤ ) The expression
P

=1 ()∆ is called a Rie-

mann sum1. The endpoints 0 1 2  −1  of the subintervals are called
grid points , and they create regular partition of the interval [ ] The sumP

=1 ()∆ is called

• a left Riemann sum if  is the left endpoint of [−1 ];

• a right Riemann sum if  is the right endpoint of [−1 ];

• a midpoint Riemann sum if  is the midpoint of [−1 ]

In the first example, we find the area under a parabola.

Example 10.8 Calculate the area  under the parabola () = 2 and above

the -axis, where 0 ≤  ≤ 2 (the parabolic region  illustrated in Figure 10.4)
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Fig. 10.4. This isn’t a triangle or a rectangle.

Solution: We want to chop up our interval [0 2] into  pieces, each the

same length. Since the total length is 2, and we’re using  pieces, each piece

must have length ∆ = 2 units. The first piece goes from 0 to 2; the

second piece goes from 2 to 4; and so on. In this case, the equidistant

partition

 = 0  1  2    −1   = 

specializes to

0 =
0



2



4


  

2(− 1)



2


= 2

The mesh ∆ of this partition is 2, since every smaller interval has width

2. It’s also pretty clear that the formula for a general  in this partition

is 2. Now, we need to choose our numbers  . For example, 0 could be

anywhere in the interval [0 2], 1 could be anywhere inside [2; 4], and

so on. We’ll make life simple by always choosing the right endpoint of each

smaller interval, so that  =  = 2. That is,

 =
2


is our choice for the smaller interval [−1 ] =

∙
2(− 1)



2



¸
This will lead to the rectangles shown in Figure 10.5.So we’re actually dealing

1 It will be generalized later.
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Fig. 10.5. Upper sum area ( = 10)

with an upper sum here—all the rectangles lie above the curve. Now, we’re

finally ready to use the formula. Consider the sum

X
=1

()( − −1)

We know that () = 2,  = 2,  = 2 as well, and −1 = 2(− 1).
So the sum becomes

() =

X
=1

µ
2



¶2µ
2


− 2(− 1)



¶
=
8

3

X
=1

2

which gives

() =
4

32
(2+ 1) (+ 1) 

Instead of using the rectangles in Figure 10.5, we could use the smaller rectan-

gles whose heights are the values of  at the left endpoints of the subintervals.

(The leftmost rectangle has collapsed because its height is 0.) The sum of the

areas of these approximating rectangles is

() =
8

3

X
=1

(− 1)2

which leads to

() =
4

32
(2− 1) (− 1) 
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It is easy to check, that as  increases values of () decreases, but values

of () increases. Tables 10.3 and 10.4 shows what happens when we divide

the region  into more and more strips of equal width. By computing the sum

of the areas of the smaller rectangles and the sum of the areas of the larger

rectangles , we obtain better lower and upper estimates for area :

()    () for  ≥ 1

So one possible answer to the question is to say that the true area of  lies

somewhere between 2 6663 and 2 6671.

 () ()

10 22800 3 0800

25 25088 2 8288

50 25872 2 7472

100 26268 2 7068

1000 26627 2 6707

10000 2 6663 2 6671

(10.3)

 = 10 (10) = 22800  = 10 (10) = 3 0800

 = 25 3 (25) = 25088  = 25 (25) = 2 8288

(10.4)
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The sum () as well as () is only an approximation to the area we’re

looking for. Since the mesh ∆ of the partition is 2, we can force the mesh

to go to 0 by letting  → ∞. The rectangles become smaller and smaller,
but there are more and more of them which hug the curve  = 2 better and

better. So we have

lim
→∞

4

32
(2− 1) (− 1) ≤  ≤ lim

→∞
4

32
(2+ 1) (+ 1) 

All that’s left is to find the last limit. You can show that (independently on

the choice of ) the limit of
P

=1 ()∆ is 83, so we have finally shown

that

 =
8

3
 ¤

There is one final note. Though the use of a Riemann sum to estimate a

definite integral is a very direct approach, it is not very efficient. More efficient

methods of estimating definite integrals have been developed, and these are

studied in the branch of mathematics called Numerical Analysis.

10.3 Net area

We introduced Riemann sums in Definition 10.7 as a way to approximate the

area of a region bounded by a curve  = () and the -axis on an interval

[ ]. In that discussion, we assumed  to be nonnegative on the interval. Our

next task is to discover the geometric meaning of Riemann sums when  is

negative on some or all of [ ]. Once this matter is settled, we can proceed to

the main event of this chapter, which is to define the definite integral. With

definite integrals, the approximations given by Riemann sums become exact.

So, how do we interpret Riemann sums when  is negative at some or all points

of [ ]? The answer follows directly from the Riemann sum definition.

Example 10.9 Evaluate and interpret the midpoint Riemann sums for () =

1− 2 on the interval [ ] = [1 3] with  = 8 equally spaced subintervals (see

Figure 10.6).

Solution: The length of each subinterval is ∆ =
(− )


=
(3− 1)
8

=
1

4


So the grid points are  =  + ∆  = 0   To compute the midpoint

Riemann sum, we evaluate  at the midpoints of the subintervals, which are

1 = 11250 2 = 13750 3 = 16250 4 = 18750

5 = 21250 6 = 23750 7 = 26250 8 = 28750
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Fig. 10.6. The midpoint Riemann sum for  = 8 and () = 1 − 2 on [1 3] is

−66563.

The resulting midpoint Riemann sum is

X
=1

()∆ =
1

4

8X
=1

() = −66563

All values of () are negative, so the Riemann sum is also negative. Because

area is always a nonnegative quantity, this Riemann sum does not approximate

an area. Notice, however, that the values of () are the negative of the heights

of the corresponding rectangles (Figure 10.6). Therefore, the Riemann sum is

an approximation to the negative of the area of the region bounded by the

curve. ¤
In the more general case that  is positive on only part of [ ], we get pos-

itive contributions to the sum where  is positive and negative contributions

to the sum where  is negative. In this case, Riemann sums approximate the

area of the regions that lie above the -axis minus the area of the regions that

lie below the -axis (Figure 10.7). This difference between the positive and

negative contributions is called the net area; it can be positive, negative, or

zero (see Figure 10.7).

Definition 10.10 (Net area) Consider the region Ω bounded by the graph

of a continuous function  and the -axis between  =  and  = . The net

area of Ω is the sum of the areas of the parts of Ω that lie above the -axis

minus the sum of the areas of the parts of Ω that lie below the -axis on [ ].

What we have learned is this: If ()  0 on the interval under discussion,

then the integral of  will be a negative number. If we want to calculate positive
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Fig. 10.7. Riemann sum approximates the area of the regions that lie above the -axis

minus the area of the regions that lie below the -axis

area then we must interject a minus sign (see Figure 10.8). Let us nail down

our understanding of these ideas by considering an example.

Example 10.11 Use the areas shown in the figure ?? to find

a)
R 

()

b)
R 

()

c)
R 

()

d)
R 

()

e)
R 

|()| 

Solution:

a)
R 

() = 728 (net area)

b)
R 

() = −165 (net area)

c)
R 

() = 728 + (−165) = 5 63 (net area)

d)
R 

() = 728 + (−165) + 6 26 = 11 89 (net area)

e)
R 

|()|  = 728− (−165) + 6 26 = 15 19 (positive area)
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Fig. 10.8. Positive area for the function from Figure 10.7.

Fig. 10.9. Net areas for Example 10.11.
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10.4 The definite integral

Riemann sums for  on [ ] give approximations to the net area of the region

bounded by the graph of  and the -axis between  =  and  = , where

  . How can we make these approximations exact? If  is continuous on

[ ], it is reasonable to expect the Riemann sum approximations to approach

the exact value of the net area as the number of subintervals  → ∞ and as

the length of the subintervals ∆ → 0 (Figure 10.4). In terms of limits, we

write

  = lim
→∞

X
=1

()∆ (10.5)

The Riemann sums we have used so far involve regular partitions in which the

subintervals have the same length ∆. We now introduce partitions of [ ]

in which the lengths of the subintervals are not necessarily equal. A general

partition of [ ] consists of the  subintervals

[0 1] [1 2] [2 3]  [−1 ]

where 0 =  and  = . The length of the -th subinterval is ∆ = −−1,
for  = 1  . We let  be any point in the subinterval [−1 ]
This general partition is used to define the general Riemann sum.

Definition 10.12 (General Riemann sum) Suppose

[0 1] [1 2] [2 3]  [−1 ]

are subintervals of [ ] with

 = 0  1  2    −1   = 

Let ∆ be the length of the subinterval [−1 ] and let  be any point in
[−1 ] for  = 1 2   If  is defined on [ ], the sum

X
=0

()∆ = (1)∆1 + (2)∆2 + + ()∆ (10.6)

is called a general Riemann sum for  on [ ] (see Figure 10.10 ).

Now consider the limit of
P

=0 ()∆ as →∞ and as all the ∆ → 0.

We let ∆ denote the largest value of ∆; that is,

∆ = max{∆1∆2 ∆}
Observe that if ∆→ 0, then ∆ → 0, for  = 1 2  . In order for the limit

lim∆→0
P

=0 ()∆ to exists, it must have the same value over all general

partitions of [ ] and for all choices of  on a partition.
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Fig. 10.10. Riemann Sum. Each  can be any point in the -th subinterval.

Definition 10.13 A function  defined on [ ] is integrable on [ ] if

lim
∆→0

X
=0

()∆ (10.7)

exists and is unique over all general partitions of [ ] and all choices of 
on a partition. This limit is the definite integral of  from  to , which we

write Z 



() = lim
∆→0

X
=0

()∆ (10.8)

The symbol Z 



()

which is read as ”the integral from  to  of  of  dee " or sometimes as

”the integral from to  of  of  with respect to ." When you find the value

of the integral, you have evaluated the integral.

The component parts in the integral symbol also have names:

• () is the integrand ,

•  is the variable of integration,
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•  is the lower limit of integration,

•  is the upper limit of integration,

• R is the integral sign.
The variable of integration is a dummy variable that is completely internal

to the integral. It does not matter what the variable of integration is called,

as long as it does not conflict with other variables that are in use. Therefore,

the integrals Z 



()

Z 



()

Z 



()

Z 



()

all have the same meaning.

The strategy of slicing a region into smaller parts, summing the results from

the parts, and taking a limit is used repeatedly in calculus and its applications.

We call this strategy the slice-and-sum method. It often results in a Riemann

sum whose limit is a definite integral.

10.5 Integrable and nonintegrable functions

Not every function defined over the closed interval [ ] is integrable there,

even if the function is bounded. That is, the Riemann sums for some func-

tions may not converge to the same limiting value, or to any value at all. A

full development of exactly which functions defined over [ ] are integrable

requires advanced mathematical analysis, but fortunately most functions that

commonly occur in applications are integrable. In particular, every continuous

function over [ ] is integrable over this interval, and so is every function

having no more than a finite number of jump discontinuities on [ ]. (The

latter are called piecewise-continuous. The following theorem, which is proved

in more advanced courses, establishes these results.

Theorem 10.14 (Integrability of continuous functions) If a function 

is continuous over the interval [ ], or if  has at most finitely many jump

discontinuities there (i.e. there is a positive number such that − ≤ () ≤
 for all  in [ ]), then the definite integral

R 

() exists and  is in-

tegrable over [ ]. If  is not bounded on [ ], then  is not integrable on

[ ].

The idea behind Theorem 10.14 for continuous functions is given in Example

10.8. Briefly, when  is continuous we can choose each  so that () gives
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the maximum value of  on the subinterval [−1 ], resulting in an upper
Riemann sum . Likewise, we can choose  to give the minimum value of

 on [−1 ] to obtain a lower sum. The upper and lower sums can be
shown to converge to the same limiting value as ∆ = max{∆1∆2 ∆}
(called the norm or diameter of the partition) tends to zero. Moreover, every

Riemann sum is trapped between the values of the upper and lower sums, so

every Riemann sum converges to the same limit as well. Therefore, the definite

integral exists, and the continuous function  is integrable over [ ].

For integrability to fail, a function needs to be sufficiently discontinuous

that the region between its graph and the -axis cannot be approximated well

by increasingly thin rectangles. The next example shows a function that is not

integrable over a closed interval.

Example 10.15 The function

() =

⎧⎨⎩
1 if  is rational

0 if  is irrational

has no Riemann integral over [0 1]. Underlying this is the fact that between

any two numbers there is both a rational number and an irrational number.

Thus the function jumps up and down too erratically over [0 1] to allow the

region beneath its graph and above the -axis to be approximated by rectangles,

no matter how thin they are. We show, in fact, that upper sum approximations

and lower sum approximations converge to different limiting values. If we pick

a partition of [0 1] and choose  to be the point giving the maximum value for

 on [−1 ] then the corresponding Riemann sum is

 =

X
=0

()∆ =

X
=0

1 ·∆ = 1

since each subinterval [−1 ] contains a rational number  where () = 1.
Note that the length of the intervals in the partition sum to 1,

P
=0∆ = 1.

So each such Riemann sum equals 1, and a limit of Riemann sums using these

choices equals 1. On the other hand, if we pick . to be the point giving the

minimum value for  on [−1 ], then the Riemann sum is

 =

X
=0

()∆ =

X
=0

0 ·∆ = 0

since each subinterval [−1 ] contains an irrational number . where () =
0. The limit of Riemann sums using these choices equals zero. Since the limit

depends on the choices of , the function  is not integrable. ¤
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Theorem 10.14 says nothing about how to calculate definite integrals. A

method of calculation will be developed in the next chapter, through a con-

nection to the process of taking antiderivatives.

The following example shows that it is not necessary to have subintervals

of equal width in the general Riemann sums. This is a key feature of the

development of definite integrals.

Example 10.16 Consider the region bounded by the graph of () =
√
 and

the -axis for 0 ≤  ≤ 1 As () is continuous it is integrable. So, in order to
find area of our region we can (taking into account that () is nonnegative)

evaluate the limit

lim
→∞

X
=0

()∆

where  is the right endpoint of the partition given by  =
2

2
and ∆ is the

width of the -th interval. Notice, that the width of the -th interval is given by

∆ =
2

2
− (− 1)

2

2
=
2− 1
2

and tends to zero if →∞ So, the limit is

lim
→∞

X
=0

()∆ = lim
→∞

X
=0

r
2

2

µ
2− 1
2

¶

= lim
→∞

1

3

X
=0

¡
22 − 

¢
= lim

→∞
1

3
· 1
6
 (4− 1) (+ 1)

=
2

3
 ¤

Remark 10.17 Sometimes there is an easier way. Then we can find defi-

nite integrals without using messy Riemann sums explicitly (see next chapter

entitled The "Fundamental Theorem of Calculus") or we can use geometric

arguments.

Example 10.18 Let us find

lim
→∞

X
=1

√
2 − 2

2
 (10.9)
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Fig. 10.11.

Solution: Our aim is to interpret that limit as an area. Let us begin by

looking at a few numbers

2X
=1

√
22 − 2

22
=

1

4

√
3

5X
=1

√
52 − 2

52
=

1

25

√
21 +

1

25

√
24 +

7

25
= 0659 26

10X
=1

√
102 − 2

102
≈ 0726 13

1000X
=1

√
10002 − 2

10002
≈ 0784 89

It appears that when  gets larger and larger, that sums approach a number

which is close to 08 From a geometric point of view, in we are computing 10.9

the Riemann sums which approximate (better and better when  increases)

the integral Z 1

0

p
1− 2 =



4
≈ 0785 40

(it is the area of the quater-circle with a center at the origin and the radius

one). ¤

10.6 Properties of definite integrals

In defining
R 

() as a limit of sums

P
=0 ()∆ we moved from left to

right across the interval [ ]. What would happen if we instead move right

to left, starting with 0 =  and ending at  = ? Each ∆. in the Riemann

sum would change its sign, with  − −1 now negative instead of positive.
With the same choices of . in each subinterval, the sign of any Riemann sum
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would change, as would the sign of the limit, the integral
R 

(). Since we

have not previously given a meaning to integrating backward, we are led to

define Z 



() = −
Z 



()

Although we have only defined the integral over an interval [ ] when   ,

it is convenient to have a definition for the integral over [ ] when  = , that

is, for the integral over an interval of zero width. Since  =  gives ∆ = 0,

whenever () exists we define Z 



() = 0

Theorem 10.19 states basic properties of integrals, given as rules that they

satisfy, including the two just discussed. These rules become very useful io the

process of computing integrals. We will refer to them repeatedly to simplify

our calculations.

Theorem 10.19 When  and  are integrable over the interval [ ], the

definite integral satisfies the following rules:

1. Order of integration:Z 



() = −
Z 



() (by definition). (10.10)

2. Zero width interval :Z 



() = 0 (by definition). (10.11)

3. Constant multiple:Z 



() = 

Z 



() (for any constant ). (10.12)

4. Sum and difference:Z 



(()± ())  =

Z 



()±
Z 



() (10.13)

5. Interval additivity (see Fig. 10.12):Z 



()+

Z 



() =

Z 



() (10.14)
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6. Max-min inequality :

If  has maximum value max  and minimum value min  on [ ] then

min  · (− ) ≤
Z 



() ≤ max  · (− ) (10.15)

7. Domination:

() ≥ () on [ ]⇒
Z 



() ≥
Z 



() (10.16)

() ≥ 0 on [ ]⇒
Z 



() ≥ 0 (10.17)

While Rules 1 and 2 are definitions, Rules 3 to 7 from above must be proved.

The following is a proof of Rule 6. Similar proofs can be given to verify the

other properties.

Proof. Rule 6 says that the integral of  over [ ] is never smaller than the

minimum value of  times the length of the interval and never larger than the

maximum value of  times the length of the interval. The reason is that for

every partition of [ ] and for every choice of the points 



min  · (− ) = min  ·P
=1∆ (as

P
=1∆ = (− ))

=
P

=1min  ·∆ (by constant multiple rule)

≤ P
=1  () ·∆ (min  ≤  ())

≤ P
=1max  ·∆ ( () ≤ max )

= max 
P

=1∆ (by constant multiple rule)

= max  · (− )

In short, all Riemann sums for  on [ ] satisfy the inequality

min  · (− ) ≤
X
=1

 () ·∆ ≤ max  · (− )

Hence their limit, the integral, does too.

Remark 10.20 In the Interval additivity property the point  does not need to

to be a number in the middle (see Fig. 10.12) where the situation is explained

graphically.
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Fig. 10.12. Possible locations of the point  in the Interval additivity property.

Example 10.21 To illustrate some of the rules, we suppose thatZ 2

0

() = 4

Z 5

2

() = −2
Z 2

0

() = 6

Then

1.
R 0
2
() = − R 2

0
() = −4

2.
R 2
0
(4() + 2())  = 4

R 2
0
()+ 2

R 2
0
() = 4(4) + 2(6) = 28

3.
R 5
0
() =

R 2
0
()+

R 5
2
() = 4 + (−2) = 2

Notice, that the domination property 10.16 can be generalized in Theorem

(A proof of this theorem is left as an exercise).

Definition 10.22 (Extension) If  is integrable on [ ] and () = ()

for all but finitely many  in [ ], then (by definition)Z 



() =

Z 



() (10.18)

Example 10.23 Let us considerZ 1

−1

sin


 (10.19)

Here the integrand function () =
sin


is not defined at  = 0 but we know

that

lim
→0

sin


= 1
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This discontinuity is removable, so we can understood the integral 10.19 asZ 1

−1
()

where () is a continuous function

() =

⎧⎨⎩
sin


if  6= 0

1 if  = 0

Without proof we will accept the following theorem:

Theorem 10.24 If () is bounded and has finite number of discontinuities

1  2     in [ ] then () is integrable on [ ] andZ 



() =

Z 1



()+

Z 2

1

()+ +

Z 



() (10.20)

Example 10.25 Let

() =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1−√1− 2 if 0 ≤   1

− 2 if 1 ≤   2

1 if 2  

Find Z 3

0

()

Solution: According to Figure 10.13 we can find the value of that definite

integral using geometric argumentsZ 3

0

() =

Z 1

0

()+

Z 2

1

()+

Z 3

2

()

=

Z 1

0

³
1−

p
1− 2

´
+

Z 2

1

(− 2) +
Z 3

2

(1) 

= 1− 

4
− 1
2
+ 1 =

3

2
− 1
4


The value of the integral
R 1
0

³
1−√1− 2

´
 is easy to find if you know the

formula for a circle area (here with radius 1). We will be able to find this value

analytically, after discussing "trigonometric substitutions". ¤
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Fig. 10.13.  is bounded and has finite number of discontinuities.

Exercise 10.1 The triangle inequality for definite integrals says, that

if   , then ¯̄̄̄Z 



()

¯̄̄̄
≤
Z 



|()| 

Show, that it can be deduced from the definition of the definite integral.
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The fundamental theorems of calculus

In the previous chapter we computed integrals from the definition as a limit of

Riemann sums and we saw that this procedure is sometimes long and difficult.

Sir Isaac Newton discovered a much simpler method for evaluating integrals

and a few years later Leibniz made the same discovery. They realized that

they could calculate
R 

() if they happened to know an antiderivative 

of  . This establishes a connection between integral calculus and differential

calculus. The Fundamental Theorems of Calculus relate the integral to the

derivative, and we will see in this chapter that it greatly simplifies the solution

of many problems. We will see why

the processes of integration and differentiation are inverses to one another.

11.1 The First Fundamental Theorem of Calculus

Theorem 11.1 (The First Fundamental Theorem of Calculus) If a func-

tion  is continuous on the closed interval [ ] and  is an antiderivative of

 on the interval [ ] thenZ 



() =  ()−  () (11.1)

This theorem states that if we know an antiderivative  of  , then we can

evaluate
R 

() simply by subtracting the values of  at the endpoints of

the interval [ ]. It is very surprising that
R 

(), which was defined by a

complicated procedure involving all of the values of () for between  and ,

can be found by knowing the values of  () at only two points,  and .

Proof. The key to the proof is in writing the difference  () −  () in a

convenient form. Let ∆ be any partition of [ ]

 = 0  1  2    −1   = 

with diameter ∆ where ∆ =  − −1, for  = 1   and

∆ = max{∆1∆2 ∆}
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By pairwise subtraction and addition of like terms, you can write

 ()−  () =  ()−  (−1)− −  (1) +  (1)−  (0) =
X
=1

[ ()−  (−1)] 

By the Mean Value Theorem, you know that there exists a number  in the

-th subinterval such that

 0() =
 ()−  (−1)

 − −1


Because  0() = () we obtain

 ()−  () =

X
=1

()∆

This important equation tells you that by repeatedly applying the Mean

Value Theorem, you can always find a collection of ’s such that the con-

stant  ()−  () is a Riemann sum of  on [ ] for any partition. Theorem

10.14 guarantees that the limit of Riemann sums over the partition with

∆→ 0 exists. So, taking the limit (as ∆→ 0) produces

 ()−  () = lim
max∆→0

X
=1

()∆ =

Z 



()

Provided you can find an antiderivative of you now have a way to

evaluate a definite integral without having to use the limit of a sum.

Remark 11.2 When applying the Fundamental Theorem of Calculus, the fol-

lowing notation is convenient:Z 



() =  ()| =  ()−  ()

For instance, to evaluate
R 2
1
2 you can writeZ 2

1

2 =
3

3
|21 =

23

3
− 1

3

3
=
7

3
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Remark 11.3 It is not necessary to include a constant of integration in the

antiderivative becauseZ 



() = ( () + ) |
= ( () + )− ( () + )

=  ()−  ()

Remark 11.4 Integrating a function of  over an interval and integrating

the same function of  over the same interval of integration produce the same

value for the integral. For example,Z 2

1

2 =
3

3
|21 =

7

3


Z 2

1

2 =
3

3
|21 =

7

3


Because the variable of integration in a definite integral plays no role in the

end result, it is often referred to as a dummy variable. Whenever you find it

convenient to change the letter used for the variable of integration in a definite

integral, you can do so without changing the value of the integral. Whenever

you find it convenient to change the letter used for the variable of integration

in a definite integral, you can do so without changing the value of the integral.

Example 11.5 Evaluate the definite integral:

1.
R 2
1
3

2.
R 
0
cos

3.
R 4
0

sec2 

4.
R 4
0
|− 3| 

Solution:

1. The function  =
4

4
is an antiderivative of () = 3We now evaluate

 at the 2 endpoints and subtract.Z 2

1

3 =
4

4
|21 =

24

4
− 1

4

4
=
15

4


2.
R 
0
cos = sin|0 = sin − sin 0 = 0

3.
R 4
0

sec2  = tan|40 = tan


4
− tan 0 = 1
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Fig. 11.1. How to calculate a positive area.

4. If you are dealing with absolute value functions, you might have to split

up the interval of integration. In this case

Z 4

0

|− 3|  =

Z 3

0

|− 3| +
Z 4

3

|− 3| 

=

Z 3

0

(3− ) +

Z 4

3

(− 3) 

=
9

2
+
1

2
= 5 ¤

Example 11.6 Calculate the (positive) area, between the graph of () =

3 − 22 − 11+ 12 and the -axis, between  = −3 and  = 4. The graph of

() is shown in Figure 11.1 (red dashed line).

Solution: It is easy to check, that  is nonnegative on [−3 1] and nonpos-
itive on [1 4]. From the discussion preceding this example, we know then how
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to find the positive (shaded) area

 =

Z 1

−3
()−

Z 4

1

()

=

µ
1

4
4 − 2

3
3 − 11

2
2 + 12

¶
|1−3

−
µ
1

4
4 − 2

3
3 − 11

2
2 + 12

¶
|41

=
160

3
+
99

4

=
937

12
¤

Example 11.7 Compute
R 2
1

(+ 5)2

4


Solution: The integrand may be broken apart:

(+ 5)2

4
=

2 + 10+ 25

4
=
1

2
+
10

3
+
25

4


We can find an antiderivative term by term, by the power rule:Z 2

1

µ
1

2
+
10

3
+
25

4

¶


=

µ
−1

− 10

22
− 25

33

¶
|21

=
277

24
≈ 11 542

¤

11.2 Average Value of a Function

It is easy to calculate the average value of finitely many numbers 1 2   :

 =
1 + 2 + + 




But how do we compute the average temperature during a day if infinitely

many temperature readings are possible? Figure 11.2 shows the graph of a

temperature function  (), where  is measured in hours and  in , and a

guess at the average temperature, 
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Fig. 11.2. A guess at the average temperature, 

In general, let’s try to compute the average value of a function  = (),

 ≤  ≤ We start by dividing the interval [ ] into  equal subintervals, each

with length ∆ = (− ) Then we choose points 1 2   in successive

subintervals and calculate the average of the numbers (1) (2)  () :

(1) + (2) + + ()




Since ∆ = ( − ) we can write  = ( − )∆ and the average value

becomes

(1) + (2) + + ()

(− )

∆

=
1

(− )
[(1)∆+ (2) +∆+ ()∆]

=
1

(− )

X
=1

()∆

If we let  increase, we would be computing the average value of a large number

of closely spaced values. (For example, we would be averaging temperature

readings taken every minute or even every second.) If () is integrable, then

the limiting value is

lim
→∞

1

(− )

X
=1

()∆ =
1

(− )

Z 



()

by the definition of a definite integral.

Therefore, we define the average value of  on the interval [ ] as

 =
1

(− )

Z 



() (11.2)
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Example 11.8 Find the average value of the function () = 1 + 3 on the

interval [−1 2]

Solution: With  = −1 and  = 2 we have

 =
1

(− )

Z 



) =
1

2− (−1)
Z 2

−1
(1 + 3)

=
1

3

µ
+

4

4

¶
|2−1 =

9

4
 ¤

If  () is the temperature at time , we might wonder if there is a specific

time when the temperature is the same as the average temperature. For the

temperature function graphed in Figure 11.2, we see that there are two such

times–just before noon and just before midnight. In general, is there a number

 at which the value of a function  is exactly equal to the average value of

the function, that is, () = ? The following theorem says that this is true

for continuous functions.

Theorem 11.9 (The Mean Value Theorem for Integrals) If  is con-

tinuous on the closed interval [ ] then there exists a number  in the closed

interval [ ] such that Z 



() = ()(− ) (11.3)

Proof.

Case 1: If is constant on the interval [ ] the theorem is clearly valid because

 can be any point in [ ]

Case 2: If  is not constant on [ ] then, by the Extreme Value Theorem,

you can choose () and () to be the minimum and maximum values

of  on [ ]Because () ≤ () ≤ () for all in you can apply the

domination property 10.16 to write the following.Z 



() ≤
Z 



() ≤
Z 



()

()(− ) ≤
Z 



() ≤ ()(− )

() ≤ 1

(− )

Z 



() ≤ ()
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From the third inequality, you can apply the Intermediate Value Theo-

rem to conclude that there exists some  in [ ] such that

() =
1

(− )

Z 



() or ()(− ) =

Z 



()

Remark 11.10 Notice that Theorem 11.9 does not specify how to determine

 It merely guarantees the existence of at least one number  in the interval

[ ].

Since () = 2 is continuous on the interval [1 4], the Mean-Value Theorem

for Integrals guarantees that there is a point ∗ in [1 4] such thatZ 4

1

2 = (∗)(4− 1) = 3(∗)2

But Z 4

1

2 = 21

so that

3(∗)2 = 21 or ∗ = ±
√
7

Thus, ∗ =
√
7 ≈ 265 is the point in the interval [1 4] whose existence is

guaranteed by the Mean-Value Theorem for Integrals. ¤

11.3 Second fundamental theorem of calculus

Earlier you saw that the definite integral of  on the interval was defined

using the constant  as the upper limit of integration and  as the variable

of integration. However, a slightly different situation may arise in which the

variable  is used in the upper limit of integration. To avoid the confusion of

using  in two different ways,  is temporarily used as the variable of integra-

tion. (Remember that the definite integral is not a function of its variable of

integration.)

Example 11.11 (The definite integral as a function) Evaluate the func-

tion

 () =

Z 

0

sin 

at  = 0  = 6  = 4  = 3 and  = 2.
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Solution: You could evaluate five different definite integrals, one for each

of the given upper limits. However, it is much simpler to fix  (as a constant)

temporarily to obtain Z 

0

sin  = 1− cos =  ()

Now, using you can obtain the results shown in the following table:

 (0) = 0

 (
6
) = 1− 1

2

√
3 ≈ 013397

 (
4
) = 1− 1

2

√
2 ≈ 029289

 (
3
) = 1

2

 (
2
) = 1

You can think of the function  () as accumulating the area under the curve

() = sin  from  = 0 to  = For  = 0 the area is 0 and  (0) = 0 For

 = 
2
  (

2
) = 1 gives the accumulated area under the sine curve on the entire

interval [0 
2
] This interpretation of an integral as an accumulation function

is used often in applications of integration.

In Example 11.11, note that the derivative of  is the original integrand

(with only the variable changed). That is,




[ ()] =




[1− cos] = 



∙Z 

0

sin 

¸
= sin

This result is generalized in the following theorem, called the Second Funda-

mental Theorem of Calculus.

Theorem 11.12 (Second Fundamental Theorem of Calculus) If  is con-

tinuous on an open interval  containing  then, for every  in the interval





∙Z 



()

¸
= () (11.4)

Proof. Begin by defining  as

 () =

Z 



()

Then, by the definition of the derivative, you can write

 0() = lim
∆→0

 (+∆)−  ()

∆

= lim
∆→0

1

∆

∙Z +∆



()−
Z 



()

¸
= lim

∆→0
1

∆

∙Z +∆



()

¸
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Fig. 11.3.

From the Mean Value Theorem for Integrals (assuming ∆  0) you know

there exists a number  in the interval [  + ∆] such that the integral in

the expression above is equal to ()∆ Moreover, because  ≤  ≤  +∆

it follows that →  as ∆→ 0 So, you obtain

 0() = lim
∆→0

∙
1

∆
()∆

¸
= lim

∆→0
()

= ()

A similar argument can be made for ∆  0.

Example 11.13 (Using the Second Fundamental Theorem of Calculus)




£R 
1
54

¤
= 54




hR 
1

√
2 + 1

i
=
√
2 + 1




hR 1

−

2

i
= 



h
− R 

1
−

2

i
= −−2




hR 
− 2

cos(2+1)
i
= 2cos(

2+1)
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11.4 Variation: tricky limits of integration

Consider




Z 2

0

cos 

Because the right-hand limit of integration is 2, not , we can’t just use the

Second Fundamental Theorem directly. We’re going to need the chain rule as

well. Start 0 by letting  be the quantity we want to differentiate

 =

Z 2

0

cos 

We want to find . Since  is really a function of 2, not  directly, we

should let  = 2. This means that

 =

Z 

0

cos 

The chain rule says that



=









while the First Fundamental Theorem says that




=

Z 

0

cos  = sin

Also, since  = 2, we have  = 2. Altogether,




= 2 sin

Now all we have to do is replace  by 2 to see that




= 2 sin2

In summary,





Z 2

0

cos  = 2 sin2

Not so bad when you break it down into little pieces. Let’s look at one more

example of this sort of problem: what is





Z +2



(4+ 1)  ?
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Now there are functions of  in both the left-hand and right-hand limits of

integration. The way to handle this is to split the integral into two pieces at

some number. It actually doesn’t matter where you split it, as long as it is at

a constant (where the function is defined). So, pick your favorite number—say

0 and split the integral there:Z +2



(4+ 1)  =

Z 0



(4+ 1) +

Z +2

0

(4+ 1) 

= −
Z 

0

(4+ 1) +

Z +2

0

(4+ 1) 

We’ve reduced the problem to two easier derivatives. Now it is easy to check,

that




Z +2



(4+ 1)  = − (4+ 1) + 4 (+ 2) + 1 = 8

11.5 Net Change Theorem

The First Fundamental Theorem of Calculus (Theorem 11.1) states that if 

is continuous on the closed interval [ ] and  is an antiderivative of  on

[ ] then Z 



() =  ()−  ()

But because  0() = () this statement can be rewritten asZ 



 0() =  ()−  ()

where the quantity  ()− () represents the net change of  on the interval
[ ].

Theorem 11.14 (Net Change Theorem) The definite integral of the rate

of change of a quantity  0() gives the total change, or net change, in that
quantity on the interval [ ]Z 



 0() =  ()−  ()

Popular way to illustrate the Net Change Theorem is to examine the velocity

of a particle moving along a straight line where () is the position at time 

Then its velocity is () = 0() andZ 



() = ()− ()
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This definite integral represents the net change in position, or displacement,

of the particle.

When calculating the total distance traveled by the particle, you must con-

sider the intervals where () ≤ 0 and the intervals where () ≥ 0 When

() ≤ 0 the particle moves to the left, and when () ≥ 0 the particle moves
to the right. To calculate the total distance traveled, integrate the absolute

value of velocity |()|. So, the displacement of a particle and the total distance
traveled by a particle over can be written as

Displacement on [ ] =
R 

()

Total distance traveled on [ ] =
R 

|()| 

11.6 The area between two curves

Frequently it is useful to find the area between two curves. See Fig.11.4 . Fol-

lowing the model that we have set up earlier, we first note that the intersected

region has left endpoint at  =  and right endpoint at  = . Moreover

() ≥ () for all  ∈ [ ]We partition the interval [ ] as usual. Call the
partition

 = {0 1 2  −1 }
Then, we erect rectangles over the intervals determined by the partition.

Notice that the upper curve, over the interval [ ], is  = () and the

lower curve is  = (). Assuming  ∈ [−1 ] the sum of the areas of the

rectangles is therefore
X
=1

(()− ())∆

But of course this is a Riemann sum for the integralZ 



(()− ()) 

We declare this integral to be the area determined by the two curves. So, we

can obtain the searched area of by integrating the vertical separation () −
() from  =  to  = .

Example 11.15 Find the area between the curves  = 2−2 (lower) and  =
−(− 1)2 + 3 (upper).
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Fig. 11.4. Area between two curves.

Solution: We set the two equations equal and solve to find that the curves

intersect at  = −1 and  = 2. The situation is shown in Fig. 11.4. Notice

that  = −(− 1)2 + 3 is the upper curve and  = 2 − 2 is the lower curve.
Thus the desired area is

 =

Z 2

−1

¡−(− 1)2 + 3¢− ¡2 − 2¢)
=

Z 2

−1

¡−22 + 2+ 4¢  = 9 ¤

Example 11.16 (Curves that intersect at more than 2 points) Find the

area of the region between the graphs () = 33−2−10 and () = −2+2
(see Figure 11.5).

Solution: Set the equations equal to each other to find the points of

intersection:

33 − 2 − 10 = −2 + 2

33 − 12 = 0

3 (− 2) (+ 2) = 0
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Fig. 11.5. Curves that intersect at more than 2 points.

The curves intersect at 3 points: (0 0), (2 0), and (−2−8). On the interval
−2 ≤  ≤ 0 , the graph of  is above that of , whereas on the interval

0 ≤  ≤ 2, the graph of  is above that of  . Hence, the area is given by the
2 integrals shown below.

 =

Z 0

−2
(()− ()) +

Z 2

0

(()− ()) 

Although these integrals can be time consuming, they are easy to evaluate.

We obtain

 = 12 + 12 = 24 ¤
Notice, that we can interchange the roles played by  and . In Figure 11.6

you see a region Ω, the boundaries of which are given not in terms of  but in

terms of . Here we set the representative rectangles horizontally and calculate

the area of the region as the limit of sums of the form

[ (1)−(1)]∆1 + [ (2)−(2)]∆2 + + [ ()−()]∆

where −1 ≤  ≤  These are Riemann sums for the integral of  −. The

area formula now reads

 =

Z 



[ ()−()]  (11.5)
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Fig. 11.6. Areas obtained by integration with respect to 

In this case we are integrating with respect to  the horizontal separation

 ()−() from  =  to  = .

Example 11.17 Calculate the area of the region bounded by the curves  = 2

and −  = 2 first

a) by integrating with respect to  and then (b) by integrating with respect to

,

and then

b) by integrating with respect to 

Solution: Simple algebra shows that the two curves intersect at the points

(1−1) and (4 2).

a) To obtain the area of the region by integration with respect to , we set

the representative rectangles vertically and express the bounding curves

as functions of . Solving  = 2 for  we get  = ±√;  =
√
 is

the upper half of the parabola and  = −√ The equation of the line
can be written  = − 2. (See Figure 11.7.) The upper boundary of the
region is the curve  =

√
 However, the lower boundary consists of two

parts:  = −√ from  = 0 to  = 1, and  = −2 from  = 1 to  = 4.



11.6 The area between two curves 275

Fig. 11.7.

Thus, we use two integrals:

 =

Z 1

0

¡√
− ¡−√¢¢ + Z 4

1

¡√
− (− 2)¢ 

= 2

Z 1

0

√
+

Z 4

1

¡√
− + 2

¢


=
4

3

3
2 |10 +

µ
2− 1

2
2 +

2

3

3
2

¶
|41

=
4

3
+
19

6
=
9

2


b) To obtain the area by integration with respect to , we set the representa-

tive rectangles horizontally. (See Figure 11.8) The right boundary is the

line  =  + 2 and the left boundary is the curve  = 2. Since  ranges

from −1 to 2,

 =

Z 2

−1

¡
( + 2)− 2

¢


=

µ
−1
3
3 +

1

2
2 + 2

¶
|2−1

=
9

2


In this instance integration with respect to  was the more efficient route

to take. ¤
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Fig. 11.8.

11.7 Review exercises: Chapter 11

Exercise 11.1 Check the following integralZ
32

(1 + 3)
2
 = − 1

3 + 1
+ 

and evaluate Z 1

0

32

(1 + 3)
2


Answer: 1
2

Exercise 11.2 Calculate the derivative of

3

2 + 1

and find Z 1

0

¡
32 + 4

¢
(1 + 2)

2


Answer: 1
2

Exercise 11.3 Differentiate



1 + 
and − 1

1 + 
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Next find Z 2

3

1

(1 + )2


in two ways.

Answer: : − 1
12

Exercise 11.4 IfZ 1

0

() = 3

Z 2

1

() = 4 and

Z 3

2

() = −8

calculate the following quantities using the properties of integration.

a)
R 2
0
()

b)
R 1
0
3()

c)
R 3
0
8()

d)
R 3
1
10()

Exercise 11.5 Calculate the definite integrals:

a)
R 3
−2
¡
4 + 53 + 2+ 1

¢
 Answer: 585

4

b)
R 2
0
6 Answer: 128

7

c)
R 2
1

2 + 2+ 2

4
 Answer: 11

6

d)
R 3
2



2
 Answer: 1

6

e)
R 476
0

0 Answer: 0

f)
R −2
2

4 Answer: −64
5

g)
R 8
1

1 + 2

4
 Answer: 1855

1536

h)
R −1
2

¡
1− 2

¢3
 Answer: 162

35

i)
R 4
8
(2 − 1) Answer: −436

3
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j)
R 10
9

+ 1

3
 Answer: 199

16 200

k)
R 3
−3

3−1
−1  Answer: 24

Exercise 11.6 Verify the formula





Z 



() = ()

for the following functions:

a) () = 3 − 1
b) () = 4 − 2 + 1

Exercise 11.7 Let

 () =

Z 

3

1h
(4− )2 + 8

i3
Find  0(4)

Exercise 11.8 Evaluate the following derivatives:

a)




R 
0

3

(4 − 2 + 1)


b)




R 
0

1

(4 + 1)


c)




R 
0
2
¡
4 + 1

¢3


d)




R 
0

4

(2 + 1)


Exercise 11.9 Suppose that

() =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2 0 ≤  ≤ 1

1 1 ≤  ≤ 5

(− 6)2 5 ≤  ≤ 6

a) Draw a graph off on the interval [0 6],
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b) Find
R 6
0
()

c) Find
R 6
0
()

d) Let  () =
R 
0
() Find the formula for  () in [0 6] and draw a graph

of  .

e) Find  0() for  in (0 6).

Exercise 11.10 Find all values of ∗ in the stated interval that satisfy Equa-
tion (11.3) in the Mean-Value Theorem for Integrals, and explain what these

numbers represent.

a) () =
√
 0 ≤  ≤ 3

b) () = 2 +  −12 ≤  ≤ 0
c) () = sin − ≤  ≤ 

d) () = 12 1 ≤  ≤ 3
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12

Natural logarithm

There are two types of functions: polynomial and transcendental. A polynomial

of degree  is a function of the form () = 0 + 1 + 2
2+···+. Such

a polynomial has precisely  roots (not necessarily different), and there are

algorithms that enable us to solve for those roots. For most purposes, polyno-

mials are the most accessible and easy-to-understand functions. But there are

other functions that are important in mathematics and physics. These are the

transcendental functions. Among this more sophisticated type of functions are

sine, cosine, the other trigonometric functions, and also the logarithm and the

exponential. The present chapter is devoted to the study of the natural loga-

rithm function from calculus point of view. As each new type of functions is

introduced, you will study its properties, its derivative, and its antiderivative.

We will also familiar ourself with the irrational (like ) number  Although

written references to the number  go back more than 4000 years, mathemati-

cians first became aware of the special role played by  in the seventeenth

century. The notation  was introduced by Leonhard Euler, who discovered

many fundamental properties of this important number.

12.1 Calculus gives birth to new function

Recall that the general power rule

Z
 =

+1

+ 1

has an important disclaimer—it doesn’t apply when  = −1 Consequently,
you have not yet found an antiderivative for the function () = 1 In this

section, you will use the second fundamental theorem of calculus to define such

a function. This antiderivative is a function that you have not encountered

previously in the text. It is neither algebraic nor trigonometric, but falls into

a new class of functions called logarithmic functions. This particular function

is the natural logarithmic function.
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Fig. 12.1. For   1 he area under the curve 1 from 1 out to  equals ln

Definition 12.1 (Natural logarithmic function) The natural logarithmic

function is defined by

ln =

Z 

1

1


   0 (12.1)

The domain of the natural logarithmic function is the set of all positive real

numbers.

For   1 you can think about that function as being the area under the

curve 1 from 1 out to  (see Figure ). For 0    1 the value of ln is

the negative of the actual area between the graph and the -axis. This is so

because the limits of integration,  and 1, occur in reverse order:

ln =

Z 

1

1


 with   1.

If you plug in 1 in place of  in 12.1, you will get ln 1 = 0

To sketch the graph of ln you can think of the natural logarithmic function

as an antiderivative given by the differential equation




=
1




Figure 12.2 is a computer-generated graph, called a slope (or direction) field,

showing small line segments of slope 1 The graph of  = ln is the solution

that passes through the point (1 0)
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Fig. 12.2. Natural logarithmic function.

Using the definition of the natural logarithmic function, you can prove sev-

eral important properties involving operations with natural logarithms. If you

are already familiar with logarithms, you will recognize that these properties

are characteristic of all logarithms.

Theorem 12.2 (Logaritmic properties) If  and  are positive numbers

and  is rational, then the following properties are true.

1. ln(1) = 0

2. ln() = ln() + ln()

3. ln() =  ln 

4. ln
¡



¢
= ln − ln 

Proof. The first property has already been discussed. The proof of the second

property follows from the fact that two antiderivatives of the same function

differ at most by a constant. From the second fundamental theorem of calculus

and the definition of the natural logarithmic function, you know that




[ln] =





∙Z 

1

1




¸
=
1




So, consider the two derivatives




[ln ()] =




=
1






284 12. Natural logarithm

and



[ln () + ln ()] = 0 +

1


=
1




Because ln () and ln () + ln () are both antiderivatives of
1


they must

differ at most by a constant.

ln () = ln () + ln () + 

By letting  = 1 you can see that  = 0 The third property can be proved

similarly by comparing the derivatives of ln() and  ln Finally, using the

second and third properties, you can prove the fourth property.

ln
³


´
= ln

¡
−1

¢
= ln + ln

¡
−1
¢
= ln − ln 

Example 12.3 shows how logarithmic properties can be used to expand log-

arithmic expressions.

Example 12.3 Expand the expressions

a.

ln

µ
32

−4

¶
= ln

¡
32

¢− ln ¡−4¢
=

£
ln 3 + ln 2

¤− £ln −4 + ln ¤
= [3 ln + 2 ln ]− [−4 ln + ln ]
= 3 ln + 2 ln + 4 ln − ln 

b.

ln
62

11
= ln

£
62
¤− ln 11

= ln 6 + ln2 − ln 11
= 2 ln+ ln 6− ln 11

c.

ln
√
6+ 1 = ln (6+ 1)12

=
1

2
ln (6+ 1)
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d.

ln
(2 + 1)2


3
√
2 + 3

= ln(2 + 1)2 − ln
³


3
p
2 + 3

´
= 2 ln(2 + 1)−

h
ln+ ln

¡
2 + 3

¢13i
= 2 ln(2 + 1)− ln− 1

3
ln
¡
2 + 3

¢
 ¤

When using the properties of logarithms to rewrite logarithmic functions,

you must check to see whether the domain of the rewritten function is the

same as the domain of the original. For instance, the domain of () = ln2

is all real numbers except  = 0 and the domain of  () = 2 ln is all positive

real numbers.

From the second fundamental theorem of calculus it follows, that we can

easily find the derivative of this new function. Namely




[ln] = [ln]0 =

1




Observe, that this derivative is positive for all   0 so this function is

increasing (but not very fast when  gets larger). The second derivative [ln]
00

is equal to −12 (negative) so, our function is concave down. The following
theorem lists some basic properties of the natural logarithmic function.

Theorem 12.4 (Properties of the natural logarithmic function) The nat-

ural logarithmic function has the following properties.

1. The domain is (0∞) and the range is (−∞∞)
2. The function is continuous, increasing, and one-to-one.

3. The graph is concave downward.

Proof. The domain of () = ln is (0∞) by definition. Moreover, the
function is continuous because it is differentiable. It is increasing because its

derivative

 0() =
1



is positive for   0. It is concave downward because its second derivative

 00() = − 1
2

is negative for   0.
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We know that () is increasing on its entire domain (0∞) and therefore
is strictly monotonic. Choose 1 and 2 in the domain of  such that 1 6= 2

Because is strictly monotonic, it follows that either

(1)  (2) or (1)  (2)

In either case, (1) 6= (2) So, () = ln is one-to-one.

The following limits imply that its range is the entire real line

lim
→0+

ln = −∞ and lim
→∞ ln =∞

To verify the limits, begin by showing that from the mean value theorem for

integrals, you can write

ln 2 =

Z 2

1

1


 =

1


(2− 1)

where  is in [1 2] . This implies that

1 ≤  ≤ 2
1 ≥ 1


≥ 1
2

1 ≥ ln 2 ≥ 1
2


Now, let be any positive (large) number. Because ln is increasing, it follows

that if   22  then

ln  ln 22 = 2 ln 2

However, because ln 2 ≥ 1
2

ln  2 ln 2 ≥ 2(1
2
) = 

This verifies the second limit. To verify the first limit, let  = 1 Then

 →∞ as → 0+, and you can write

lim
→0+

ln = lim
→0+

µ
− ln 1



¶
= lim

→∞ (− ln )
= − lim

→∞ (ln )

= −∞

We will state next limit as a theorem. It says, that ln grows slower than

any positive power as →∞ This statement is the most interesting when 

is small.
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Fig. 12.3. The second function tends to zero much slower than the first when →∞

Theorem 12.5

lim
→∞

ln


= 0 for any   0.

Proof. Choose  such that 0    1 and   1 −  (Notice, that if   1

then the second inequality is automatically true if the first is true.) By the

definition of ln and because    for   1

ln =

Z 

1

1


 

Z 

1

1


 =

1

1− 
1−|1

=
1

1− 

¡
1− − 1¢

and so

0 
ln




1

1− 

¡
1−− − −

¢→ 0 for any   0

as both exponents 1− −  and − are negative (see Figure 12.3).
From the limit we have just proved another important limit follows.

Corollary 12.6

lim
→0+

 ln = 0 for any   0

Proof.

lim
→0+

 ln = lim
→∞

µ
1



¶

ln

µ
1



¶
= − lim

→∞
ln


= 0

See Figure 12.4.

Example 12.7 Find an equation of the tangent line to the graph of () =

32 − ln at the point (1 3)
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Fig. 12.4. The second function tends to zero much faster than the first when → 0+

(compare the slopes)

Solution: Knowing that

 0() = 6− 1


we can find the slope of the tangent line

 0(1) = 6− 1 = 5

As this line passes through the point (1 3) we can use point-slope formula

 − 3 = 5(− 1)

and finally (see Figure 12.5)

 = 5− 2 ¤

Example 12.8 The offset logarithmic integral is defined as

Li() =

Z 

2



ln 

It is a specific anti-derivative. It is a good approximation of the number of

prime numbers less than . The graph below illustrates this. The second stair

graph shows the number () of primes below . For example, () = 4 because

2, 3, 5, 7 are the only primes below it. The function Li() is not an elementary

function.
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Fig. 12.5. The tangent line from Example 12.7

Fig. 12.6. Li() versus ()
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Fig. 12.7. ln  =
R 
1
1

 = 1

12.2 The number 

It is likely that you have studied logarithms in an algebra course. There,

without the benefit of calculus, logarithms would have been defined in terms

of a base number. For example, common logarithms have a base of 10 and

therefore log10 10 = 1

The base for the natural logarithm is defined using the fact that the natural

logarithmic function is continuous, is one-to-one, and has a range of (−∞∞)
Lets calculate approximate value of ln 2 (using the trapezoid rule to approx-

imate
R 2
1
1

 for example). However you do it, ln 2 turns out to be approxi-

mately equal to 06932. Similarly ln 3 ≈ 10986 Now, from the intermediate

value theorem it follows, that between 2 and 3 there exists a special number

(call it ) such that (see Figure 12.7).

ln  =

Z 

1

1


 = 1 (12.2)

Definition 12.9 (of ) The letter  denotes the positive real number such

that
ln  =

R 
1
1

 = 1

Once you know that ln  = 1 you can use logarithmic properties to evaluate

the natural logarithms of several other numbers. For example, by using the
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property

ln  =  ln  = 

you can evaluate ln  for various values of 

12.3 The derivative of the natural logarithmic function

The derivative of the natural logarithmic function is given in Theorem 12.10.

The first part of the theorem follows from the definition of the natural loga-

rithmic function as an antiderivative. The second part of the theorem is simply

the chain rule version of the first part.

Theorem 12.10 (Derivative of the natural logarithmic function) Let 

be a differentiable function of  Then

1



[ln] =

1


   0 2




[ln] =

1






=

0


  0

Example 12.11 (Differentiation of logarithmic functions) Find the deriv-

atives

a.



[ln (3)] =

1

3




[3] =

1




Another way to solve that problem:




[ln (3)] =




[ln 3 + ln ()] =

1



b.



ln(4 − ) =

1

4 − 
· 


(4 − ) =

43 − 1
4 − 

c.




[(ln) · (cot)] =

∙



ln

¸
· (cot) + (ln) 


[cot]

1


cot− (ln) ¡cot2 + 1¢

d.



[ ln] =  ·

µ
1



¶
+ ln · (1) = 1 + ln
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e.




£
ln
¡
4
¢¤
=




[4 ln] =

4



Compare it with



(ln)4 =

4


ln3 

f. Logarithm can help us to find complicated derivatives. Look for examples:





¡
ln
√
+ 2

¢
=





µ
1

2
ln (+ 2)

¶
=
1

2

1

(+ 2)
=

1

2 (+ 2)

g. Compute




³

p
2 + 1

´
at  = 1.

We can calculate this derivative using our previous skills, but the new

method seems to be more convenient. Let us denote

 = 
p
2 + 1

and apply the logarithm to both sizes

ln  = ln+
1

2
ln
¡
2 + 1

¢


Using implicit differentiation and the chain rule we get

0


=
1


+



2 + 1


So

0 = 

µ
1


+



2 + 1

¶


Now we can plug in our point  = 1 obtaining

0(1) =
√
2

µ
1 +

1

2

¶
=
3

2

√
2

h. Find  if

 =
(2 + 1)

p
(+ 3)

− 1    1
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We take the natural logarithm of both sides and simplify the result with

the properties of logarithms:

ln  = ln

Ã
(2 + 1)

p
(+ 3)

− 1

!
= ln(2 + 1) + ln

p
(+ 3)− ln (− 1)

= ln(2 + 1) +
1

2
ln(+ 3)− ln (− 1) 

We then take derivatives of both sides with respect to :

1






=

1

2 + 1
· (2) + 1

2
· 1

+ 3
− 1

− 1 

Next we solve for :




= 

µ
2

2 + 1
+

1

2 (+ 3)
− 1

− 1
¶


Finally, we substitute for  from the original equation:




=
(2 + 1)

p
(+ 3)

− 1 ·
µ

2

2 + 1
+

1

2 (+ 3)
− 1

− 1
¶

¤

The method used above is called logarithmic differentiation

Products, quotients, and powers of functions are usually differentiated using

the derivative rules of the same name (perhaps combined with the Chain Rule).

There are times, however, when the direct computation of a derivative is very

tedious. Consider the function

() =
(2 − 2)3√2 + 1

2 + 4

We would need the Quotient, Product, and Chain Rules just to compute  0(),
and simplifying the result would require additional work. The properties of

logarithms are useful for differentiating such functions.

Example 12.12 Let () =
(1+1)3

√
2+1

2+4
and compute  0()

Solution: We begin by taking the natural logarithm of both sides and

simplifying the result:

ln(()) = ln

"
(2 − 2)3√2 + 1

2 + 4

#
= 3 ln(2 − 2) + 1

2
ln(2 + 1)− ln(2 + 4)
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We now differentiate both sides using the Chain Rule; specifically the deriva-

tive of the left side is



[ln(())] =

 0()
()

. Therefore,

 0()
()

= 6


2 − 2 +


2 + 1
− 2 

2 + 4


Solving for  0(), we have

 0() = ()

∙
6



2 − 2 +


2 + 1
− 2 

2 + 4

¸


Finally, we replace () with the original function:

 0() =
(2 − 2)3√2 + 1

2 + 4

µ
6



2 − 2 +


2 + 1
− 2 

2 + 4

¶
=

√
2 + 1

¡
2 − 2¢2
(2 + 4)

2

¡
54 + 342 + 20

¢
¤

Logarithmic differentiation also provides an alternative method for finding

derivatives of functions of the form ()().

12.4 Derivative involving absolute value

Since we have only defined the function ln when   0, the graph is only

sketched in Fig. 12.2 to the right of the -axis. However it certainly makes

sense to discuss the function ln || when  6= 0 (Figure 12.8.)
The following theorem states that you can differentiate functions of the form

 = ln || as if the absolute value notation was not present.
Theorem 12.13 If  is a differentiable function of  such  6= 0 that then




ln || = 0


 (12.3)

Proof. If   0 then and the result follows from Theorem 12.10. If   0

then || = − and we have



ln || = 


ln (−) = −

0

− =
0




Example 12.14 Find the derivative of () = ln |sin| 
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Fig. 12.8. The graph of the function ln || and two its tangent lines at (−1 0) and
(1 0)

Solution:

 0() =
cos

sin
= cot  = sin  0 on (0 )  ¤

Equation (12.3) leads to the following integral formula.

If  is a differentiable function that is never zero,R
1

 = ln ||+  (12.4)

It says that integrals of a certain form lead to logarithms and allows us (for ex-

ample) to integrate certain trigonometric functions. We will use those formulas

for developing some integration techniques.

Example 12.15 The integral of 2 isZ
2


 = 2

Z
1


 = 2 ln ||2 +  = 2 ln2 + 

Note, that the absolute value sign has disappeared, because 2 is always positive

for nonzero arguments. ¤

Example 12.16 Calculate
R

1
5+2

 using Formula 12.4.Z
1

5+ 2
 =

1

5

Z
5

5+ 2
 =

1

5
ln |5+ 2|+ 

or (equivalently)Z
1

5+ 2
 =

1

5

Z
1

+ 2
5

 =
1

5
ln

µ¯̄̄̄
+

2

5

¯̄̄̄¶
+ 
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Fig. 12.9. The region described in the Example 12.18.

Example 12.17 The integrals of tan and cot.Z
tan =

Z
sin

cos


=

Z −


 = cos  0 on
³
−
2



2

´
= − ln ||+  = − ln |cos|+ 

= ln
1

|cos| +  = ln |sec|+ 

Similarly, Z
cot =

Z
cos

sin


=

Z



 = sin

= ln ||+  = ln |sin|+ 

= − ln |csc|+

Example 12.18 Find the area of the region bounded by the curve  =


1 + 2


the  axis and the line  = 4 (see Figure 12.9 ).

Solution: The area is equal toZ 4

0



1 + 2
 =

1

2

Z 4

0

2

1 + 2
 =

1

2
ln(1 + 2)|41

=
1

2
(ln 17− ln 1) = 1

2
ln 17 = 14166 ¤
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Example 12.19 In a similar manner (as in the previous example) we can

calculate many complicated integrals. For example:

a. Z
1

 ln
 =

Z µ
1

ln

¶µ
1



¶
 = ln |ln|+  ¤

b. Z
2 + + 2

2 + 2
 =

Z µ
2 + 2

2 + 2
+



2 + 2

¶


=

Z µ
2 + 2

2 + 2

¶
+

Z µ


2 + 2

¶


=

Z
(1) +

1

2

Z µ
2

2 + 2

¶


= +
1

2
ln(2 + 2) + 
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13

The exponential function

An exponential function with base  is a function of the form () = , where

  0 and  6= 1. Some examples are 3, (14) , and 10 . We exclude the

case  = 1 because () = 1 is a constant function. All exponential functions

have domain (−∞∞) and range (0∞) So an exponential function never
assumes the value 0. Note that an exponential function has a constant base

and variable exponent. Thus, functions such as () = 2 and () = 

would not be classified as exponential functions, since they have a variable

base and a constant exponent. The present chapter is devoted to the study

of exponential functions defined in a modern, calculus like way via natural

exponential function.

13.1 The natural exponential function

The function () = ln() is increasing on its entire domain, and therefore

it has an inverse function −1 The domain of −1 is the set of all reals, and
the range is the set of positive reals, as shown in Figure 13.1. So, for any real

number 

(−1()) = ln(−1()) = 

Definition 13.1 (of the natural exponential function) The inverse func-

tion of the natural logarithmic function () = ln is called the natural expo-

nential function and is denoted by

−1() = 

That is,

 =  if and only if  = ln 

The natural exponential function is the most important function in the

whole calculus. We will meet it many times later and we must study its prop-

erties very carefully. First notice, that the familiar rules for operating with

rational exponents can be extended to the natural exponential function, as

shown in the following theorem.
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Fig. 13.1. The graphs of  = ln and  = ln−1  =  The inverse function of the

natural logarithmic function is the natural exponential function.
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Theorem 13.2 (Operations with the natural exponential functions)

Let  and  be any real numbers. Then

1.  = +

2.



= −

Proof. To prove property 1, you can write

ln
³


´
= ln () + ln

³

´

= + 

= ln
³
+

´


Because the natural logarithmic function is one-to-one, you can conclude

that

 = +

The proof of the other property is similar.

As we know, an inverse function −1 shares many properties with  So, the
natural exponential function inherits the following properties from the natural

logarithmic function.

Properties of the natural exponential function:

1. The domain of () =  is (−∞∞), and the range is (0∞)

2. The function () =  is continuous, increasing, and one-to-one on its

entire domain.

3. The graph of () =  is concave upward on its entire domain.

4. lim→−∞  = 0 and lim→∞  =∞

13.2 Derivatives of the natural exponential function

One of the most intriguing (and useful) characteristics of the natural expo-

nential function is that it is its own derivative. In other words, it is a solution

to the differential equation 0 =  This result is stated in the next theorem.
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Theorem 13.3 (Derivatives of the natural exponential function) Let 

be a differentiable function of  Then

1.



() = 

2.



() = 






(13.1)

Proof. To prove Property 1, use the fact that ln  =  and differentiate

each side of the equation. So, from definition of the exponential function

ln  = 

Now differentiate each side with respect to 




[ln ] =




[]

obtaining (by chain rule) the equality

1





[] = 1

which (after rearrangement) gives the final relation




[] = 

You can interpret this theorem geometrically by saying that the slope of the

graph of  () =  at any point ( ) is equal to the -coordinate of the

point.

Example 13.4 (Differentiating exponential functions)

a.




h
2

2+1
i
= 2

2+1


= 42

2+1  = 22 + 1

b.




£
−4

¤
= −4




=
4

2
−

4
  = 4

c.



[ ln] =




+  ln = 

µ
1


+ ln

¶
by the product rule ¤
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Fig. 13.2. Unique relative minimum of () = 

Example 13.5 (Locating relative extrema) Find the relative extrema of

() = 

Solution: The derivative of is given by  0() =  +  =  (1 + ) 

Because  is never 0, the derivative is 0 only when  = 1 Moreover, by

the first derivative test, you can determine that this corresponds to a relative

minimum, as shown in Figure 13.2. Because the derivative  0() =  (1 + )

is defined for all there are no other critical points. ¤

13.3 Integrals of exponential functions

Each differentiation formula in Theorem 13.3 has a corresponding integration

formula.

Theorem 13.6 (Integration rules for exponential functions) Let  be

a

differentiable function of  Then

1.
R
 =  + 

2.
R
 =  +

(13.2)

Example 13.7 Find
R
−

2
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Fig. 13.3. The graph of the standard normal probability density function with two

points of inflection.

Solution:Z
−

2

 =

Z
−

2

()

=

Z

µ
−
2

¶
where  = −2

= −1
2

Z


= −1
2
 +

= −1
2
−

2

+  ¤

Example 13.8 It is interesting, that the innocent looking function

() =
1√
2

−
2

2

called standard normal probability density function does not have an anti-

derivative function expressed in terms of elementary functions.Let us show,

that this important function (see Figure 13.3) has points of inflection where

 = ±1 To locate possible points of inflection, we will find the -values for

which the second derivative is 0.

() =
1√
2

−
2

2
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Fig. 13.4. Standard normal probability density function versus standard normal cu-

mulative distribution function

 0() = −1
2

√
2√

−

1
2
2

 00() =
1

2

√
2√

2−

1
2
2 − 1

2

√
2√

−

1
2
2

=
1

2

√
2√

−

1
2
2
¡
2 − 1¢

So,  00() = 0 when  = ±1 and you can apply the standard techniques
of Chapter 7 to conclude that these values yield the two points of inflection

shown in Figure 13.3. It is interesting, that area under that bell-shaped curve

(bounded by -axis from below) can be found (using multivariable calculus),

is finite and equal to 1 We call the antiderivative of  the standard normal

cumulative distribution function  ().

Example 13.9 Find
R
42

2+1.

Solution:Z
42

2+1 =

Z
 where  = 22 + 1

=  + 

= 2
2+1 + 

Compare the result with Example 13.4a. ¤
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Example 13.10 Find
R 1
0



1 + 
 (This is an area problem because the in-

tegrated function is nonnegative.)

Solution: Substituting  = 1 +  we get
R 1
0



1 + 
 = ln (1 + ) |10 =

ln (+ 1)− ln 2 ≈ 0620 11 ¤

Example 13.11 Sketch the graph of () = 2−

Solution: First, let us consider the first derivative  0()

 0() = 2− + 2− (−1) = 2− − 2− = −− (− 2) 
This gives us two critical numbers: 0 and 2 At the point 0 this derivative

changes sign (from negative to positive) so, we have local minimum (0) = 0.

Similarly we can conclude that the function has a local maximum at  = 2

where (2) = 42, as  0() changes sign from positive to negative there.

Examining the second derivative

 00() = 2− − 4− + 2− = −
¡
2 − 4+ 2¢

we deduce, that the graph of  has two inflection points where

2 − 4+ 2 = 0
i.e. at  = 2−√2 and  = 2 +

√
2 Additionally,  is concave up on intervals

(−∞ 2−√2) and (2+√2∞) and concave down on (2−√2 2+√2) Finally,
function  has a horizontal asymptote as

lim
→∞2− = 0

See Figure 13.5 ¤.

13.4 One important limit

The base  may seem strange at first. Bit, it comes up everywhere. Later you

will learn to appreciate just how natural it is.

Example 13.12 Use logs to evaluate lim→∞(1 + 1

).

Solution: Because the exponent  changes, it is better to find the limit of

the logarithm

lim
→∞ ln

∙µ
1 +

1



¶¸
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Fig. 13.5. The graph of the function () = 2−

We know that

ln

∙µ
1 +

1



¶¸
=  ln

µ
1 +

1



¶


This expression has two competing parts, which balance: →∞ while ln(1+
1

)→ 0 But

ln

∙µ
1 +

1



¶¸
=  ln

µ
1 +

1



¶
=
ln
¡
1 + 1



¢
1


=
ln (1 + )


with  =

1




Next, because ln 1 = 0

ln

∙µ
1 +

1



¶¸
=
ln (1 + )− ln 1




Take the limit:  = 1

→ 0 as →∞, so that

lim
→∞

ln (1 + )− ln 1


=



ln() |=1= 1

In all

lim
→∞ ln

∙µ
1 +

1



¶¸
= 1

We have just found, that  = ln
£¡
1 + 1



¢¤→ 1 as →∞ If  =
¡
1 + 1



¢
then  =  → 1 as →∞ In other words, we have evaluated the limit we

wanted:

lim
→∞(1 +

1


) =  (13.3)
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¤

Remark 13.13 We never figured out what the exact numerical value of  was.

Formula tells us that, for large values of , the expressionµ
1 +

1



¶

gives a good approximation to the value of . Use your calculator or computer

to check that the following calculations are correct

 = 1
¡
1 + 1



¢
= 2

 = 10
¡
1 + 1



¢
= 259374246013

 = 50
¡
1 + 1



¢
= 269158802907

 = 100
¡
1 + 1



¢
= 270481382942

 = 1000
¡
1 + 1



¢
= 271692393224

 = 10000000
¡
1 + 1



¢
= 271828169254



With the use of a sufficiently large value of , together with estimates for the

error term ¯̄̄̄
−

µ
1 +

1



¶ ¯̄̄̄
it can be determined that

 = 271828182846

to eleven place decimal accuracy. Like the number , the number  is an irra-

tional number. ¤

Logs are used in all sciences and even if finance—look at the example below.

Example 13.14 (Euler’s very special number) Here is a function that

you may have seen before if you studied interest on an investment that com-

pounds more and more frequently during a year. Let’s suppose that you invest

$100 in an account that pays interest at an annual percentage rate of 5% and

you leave the earned interest in the account to compound. If the interest is

compounded  times per year, the amount of principal in the account at the

end of one year will be 100(1 + 05).

Here are some examples of the amount in the account (in dollars) at the end

of one year if the interest is compounded once, twice,..., up to 12 times a year
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Fig. 13.6. The amount in the account (in dollars) at the end of one year if the interest

is compounded  times a year.

(monthly).

 = interest pd/yr account balance

1 105

2 105063

3 105084

4 105095

5 105101

6 105105

7 105108

8 105111

9 105113

10 105114

11 105115

12 105116

Look at the Figure 13.6. What do you think happens to the function below,

as  gets larger and larger, in other words, as you approach a situation where

the interest compounds continuously at every instant in time during the year?

To find out, let’s evaluate the limit of the principal function as  goes to

infinity.

lim
→∞ 100

µ
1 +

5

100

¶

= 100
1
20 ≈ 105 13

Are you surprised? Why is this happening? The base is Euler’s number . Why

is this happening? ¤



310 13. The exponential function

13.5 Arbitrary powers. The function () = 

The elementary notion of exponent applies only to rational numbers. Expres-

sions such as

104 223 6−15 12

make sense, but so far we have attached no meaning to expressions such as

10 2 6−
√
2 

The extension of our sense of exponent to allow for irrational exponents is

conveniently done by making use of the logarithm function and the exponential

function. The heart of the matter is to observe that for   0 and  rational,

 = () ln

We define  for irrational  by setting

 =  ln

We can now state that

if   0 then  =  ln for all real numbers  (13.4)

In particular

10 =  ln 10 2 =  ln 2 6−
√
2 = −

√
2 ln 6  =  ln

With this extended sense of exponent, the usual laws of exponents still hold:

+ =  − = 


 () =  (13.5)

Proof.

+ = (+) ln =  ln ·  ln = 

− = (−) ln =  ln · − ln =  ln

 ln
=






() =  ln


=  ln = 

The differentiation of arbitrary powers follows the pattern established for

rational powers; namely, for each real number  and each   0




() = −1 (13.6)
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Proof.




() =





³
 ln

´
=  ln




( ln) = 




= −1

Thus




³

√
3
´
=
√
3
√
3−1 and




() = −1

As usual, we differentiate compositions by the chain rule. Thus





µ¡
3 + 2

¢√2¶
=
√
2
¡
3 + 2

¢√2−1 



¡
3 + 2

¢
= 3
√
22

¡
3 + 2

¢√2−1
Logarithmic differentiation is a useful technique for dealing with derivatives

of things like ()(), where both the base and the exponent are functions of

. After all, how would you find





³
sin()

´
with what we have seen already? It doesn’t fit any of the rules. Still, we have

these nice log rules which cut exponents down to size. If we let  = sin(),

then

ln() = ln(sin()) = sin() ln()

Now let’s differentiate both sides (implicitly) with respect to :




(ln()) =




(sin() ln())

Let’s look at the right-hand side first. This is just a function of  and re-

quires the product rule; you should check that the derivative works out to be

cos() ln() + sin(). Now let’s look at the left-hand side. To differentiate

ln() with respect to  (not !), we should use the chain rule. Set  = ln(),

so that  = 1. We need to find ; by the chain rule,




=








=
1








So, implicitly differentiating the equation ln() = sin() ln() produces

1






= cos() ln() +

sin()




Now we just have to multiply both sides by  and then replace  by sin():




=

µ
cos() ln() +

sin()



¶
 =

µ
cos() ln() +

sin()



¶
sin()
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Fig. 13.7. The graph of () = −

That’s the answer we’re looking for. (By the way, there is another way we

could have done this problem. Instead of using the variable , we could just

have used our formula  = ln() to write

sin() = ln(
sin()) = sin() ln()

Now we can differentiate the right-hand side of this with respect to  by

using the product and chain rules. When you’ve finished, you should replace

sin() ln() by sin() and check that you get the same answer as the original

one above.)

Example 13.15 Find the derivative of

() = − at   0 (13.7)

One way to find this derivative is to observe that

− = − ln

and then differentiate:





¡
−

¢
=





³
− ln

´
= − ln




(− ln) = − 1


(ln+ 1) 

Another way to find this derivative is to take the natural logarithm of both

sides in

 = −
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obtaining

ln = ln− = − ln
We then take derivatives of both sides with respect to :

1






= −((1) ln+ (1)) = − (ln+ 1) 

Next we solve for :




= − (ln+ 1) 

Finally, we substitute for  from the original equation:




= − (ln+ 1)− ¤

Each derivative formula gives rise to a companion integral formula. The

integral version of (13.6) takes the form

R
 =

+1

 + 1
+ for  6= −1 (13.8)

Note the exclusion of  = −1. What is the integral if  = −1?
Example 13.16 Find

R
2

(23+1)


Solution: Set

 = 23 + 1  = 62

Then Z
2

(23 + 1)
  =

1

6

Z
− =

1

6

µ
1−

1− 

¶
+ 

=
1

6

Ã¡
23 + 1

¢1−
1− 

!
+ 

= − 1

3 − 3
3 + 1

2

(23 + 1)
 +  ¤

13.6 Bases other than 

The base of the natural exponential function is This “natural” base can be

used to assign a meaning to a general base 
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Definition 13.17 (Definition of exponential function to base ) If  is

a positive real number ( 6= 1) and  is any real number, then the exponential
function to the base  is denoted by  and is defined by

 = (ln )

If  = 1, then  = 1 = 1 is a constant function.

These functions obey the usual laws of exponents. For instance, here are

some familiar properties.

1. 0 = 1

2.  = +

3.



= −

4. () = 

The proof is left to the reader as an exercise.

When modeling the half-life of a radioactive sample, it is convenient to use

as the base of the exponential model. (Half-life is the number of years required

for half of the atoms in a sample of radioactive material to decay.)

Example 13.18 The half-life of carbon-14 is about 5715 years. A sample con-

tains 1 gram of carbon-14. How much will be present in 10 000 years?

Solution: Let  = 0 represent the present time and let  represent the

amount (in grams) of carbon-14 in the sample. Using a base of 1
2
 you can

model by the equation

 =

µ
1

2

¶5715



Notice that when  = 5715 the amount is reduced to half of the original

amount.

 =

µ
1

2

¶57155715
=
1

2
gram

When  = 11 430 the amount is reduced to a quarter of the original amount,

and so on. To find the amount of carbon-14 after 10 000 years, substitute

10 000 for 

 =

µ
1

2

¶100005715
≈ 030 gram ¤

Logarithmic functions to bases other than can be defined in much the same

way as exponential functions to other bases are defined.
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Definition 13.19 (Definition of logarithmic function to base ) If  is

a positive real number ( 6= 1) and  is any positive real number, then the log-
arithmic function to the base  is denoted by log  and is defined as

log  =
1

ln 
ln (13.9)

Remark 13.20 In precalculus, you learned that log  is the value to which

 must be raised to produce This agrees with the definition given here because

log  = (1 ln ) ln = (1 ln ) ln  ln = ln = 

Logarithmic functions to the base  have properties similar to those of the

natural logarithmic function given in Theorem 12.2 (Assume  and  are

positive numbers and  is rational.)

1. log 1 = 0

2. log  = log + log 

3. log 
 =  log 

4. log



= log − log 

From the definitions of the exponential and logarithmic functions to the

base  it follows that () =  and () = log  are inverse functions of

each other (see Figure 13.8, where  = 2)

Theorem 13.21 (Properties of inverse functions)

1.  =  if and only if  = log

2. log  =  for   0

3. log 
 =  for all 

The logarithmic function to the base 10 is called the common logarithmic

function. So, for common logarithms,  = 10 if and only if  = log10 
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Fig. 13.8. The graph of 2 and its inverse, log2 

13.7 Differentiation and Integration

To differentiate exponential and logarithmic functions to other bases, you have

three options:

1. use the definitions of  and log  and differentiate using the rules for

the natural exponential and logarithmic functions,

2. use logarithmic differentiation, or

3. use the following differentiation rules for bases other than 

Theorem 13.22 (Derivatives for bases other than ) Let  be a posi-

tive real number ( 6= 1) and let  be a differentiable function of Then

1.



[] = (ln )  2.




[] = (ln)





3.



[log ] =

1

(ln )
4.




[log ] =

1

(ln )





(13.10)

Proof. By definition,  = (ln) So, you can prove the first rule by letting

 =  (ln ) and differentiating with base to  obtain




[] =





h
(ln )

i
= (ln ) (ln ) = (ln ) 
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To prove the third rule, you can write




[log ] =





∙
ln

ln 

¸
=

1

ln 

µ
1



¶
=

1

(ln )


The second and fourth rules are simply the chain rule versions of the first and

third rules.

From the theorem 13.22 it follows why the function ln is called “natural

logarithm”. It comes out in the formulas 13.10 even if you are currently using

bases different than 

Example 13.23 Calculate

a.



(log5 ||) b.




(log2

¡
32 + 1

¢
)

Solution:

a.



(log5 ||) =





∙
ln ||
ln 5

¸
=
1

5




[ln ||] = 1

5

µ
1



¶
=
1

5


b.




(log2

¡
32 + 1

¢
) =





"
ln
¡
32 + 1

¢
ln 2

#
=

1

ln 2

1

(32 + 1)





¡
32 + 1

¢
=

1

ln 2

1

(32 + 1)
(6) =

6

ln 2 (32 + 1)
¤

Occasionally, an integrand involves an exponential function to a base other

than  When this occurs, there are two options:

1. convert to base  using the formula  = (ln ) and then integrate, or

2. integrate directly, using the integration formula

R
 =

µ
1

ln 

¶
 + 

(which follows from Theorem 13.22).

Example 13.24 Find
R
3

Solution: Z
3 =

3

ln 3
+  ¤
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Fig. 13.9.

Example 13.25 Find area under the curve  = 2 between  = 0 and  = 2

(see Fig. 13.9 ).

Solution:

 =

Z 2

0

2 =
1

ln 2

¡
22 − 20¢ = 3

ln 2
≈: 4 328 1 ¤

When the power rule



[] = −1, was introduced before, the exponent

was required to be a rational number. Now the rule is extended to cover any

real value of  Try to prove this theorem using logarithmic differentiation.

Theorem 13.26 (The power rule for real exponents) Let  be any real

number and let  be a differentiable function of 

1.



[] = −1

2.



[] = −1






(13.11)

The next example compares the derivatives of four types of functions. Each

function uses a different differentiation formula, depending on whether the

base and the exponent are constants or variables.

Example 13.27 (Comparing Variables and Constants)

a)



[] = 0 Constant rule



13.7 Differentiation and Integration 319

Fig. 13.10. The graph of the function 

b)



[] =  Exponential rule

c)



[] = −1 Power rule

d)



[] =  (ln+ 1)  Logarithmic differentiation.
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14

Inverse functions and inverse trig functions

In everyday language the term “inversion” conveys the idea of a reversal. For

example, in meteorology a temperature inversion is a reversal in the usual

temperature properties of air layers, and in music a melodic inversion reverses

an ascending interval to the corresponding descending interval. In mathemat-

ics the term inverse is used to describe functions that reverse one another in

the sense that each undoes the effect of the other. In this section we discuss

this fundamental mathematical idea. Next we will show how the derivative

of a one-to-one function can be used to obtain the derivative of its inverse

function. There is a remarkable special case of the chain rule. This will pro-

vide the tools we need to obtain derivative formulas for exponential functions

from the derivative formulas for logarithmic functions and to obtain derivative

formulas for inverse trigonometric functions from the derivative formulas for

trigonometric functions.

14.1 Inverse functions

14.1.1 Introduction

The idea of solving an equation  = () for  as a function of , say  = (),

is one of the most important ideas in mathematics. Sometimes, solving an

equation is a simple process; for example, using basic algebra the equation

 = 3 + 1  = () (14.1)

can be solved for  as a function of :

 = 3
p
 − 1  = () (14.2)

The first equation is better for computing  if  is known (Figure 14.1), and

the second is better for computing  if  is known (Figure 14.2).Our primary

interest in this section is to identify relationships that may exist between the

functions  and  when an equation  = () is expressed as  = (), or

conversely. For example, consider the functions () = 3 + 1 and () =
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Fig. 14.1. Here is better for computing  if  is known.

Fig. 14.2. Here is better for computing  if  is known.
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3
√
 − 1 discussed above. When these functions are composed in either order,

they cancel out the effect of one another in the sense that

(()) = 3
p
()− 1 = 3

p
(3 + 1)− 1 = 

(()) = [()]3 + 1 =
h
3
p
 − 1

i3
+ 1 = 

Pairs of functions with these two properties are so important that there is

special terminology for them.

Definition 14.1 If the functions  and  satisfy the two conditions

(()) =  for every  in the domain of 

(()) =  for every  in the domain of 
(14.3)

then we say that  is an inverse of  and  is an inverse of  or that  and 

are inverse functions.

We will call these the cancellation equations for  and −1
It can be shown (do it!) that if a function  has an inverse, then that inverse

is unique. Thus, if a function  has an inverse, then we are entitled to talk

about “the” inverse of  , in which case we denote it by the symbol −1

Remark 14.2 If  is a function, then the −1 in the symbol −1 always de-
notes an inverse and never an exponent. That is,

−1() never means
1

()


Example 14.3  = () = 5
9
( − 32) and  = () = 9

5
 + 32 are inverse

functions (for temperature). Here  is degrees Fahrenheit and  is degrees

Celsius. From  = 32 (freezing in Fahrenheit) you find  = 0 (freezing in

Celsius). The inverse function takes  = 0 back to  = 32.

14.1.2 Changing the independent variable

The formulas in (14.3) use  as the independent variable for  and  as the

independent variable for −1. Although it is often convenient to use different
independent variables for  and −1, there will be occasions on which it is
desirable to use the same independent variable for both. For example, if we

want to graph the functions  and −1 together in the same -coordinate
system, then we would want to use  as the independent variable and  as the

dependent variable for both functions. (We have just changed letters !) Thus,

to graph the functions () = 3 + 1 and −1() = 3
√
 − 1 of Example from
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page 321 in the same -coordinate system, we would change the independent

variable  to , use  as the dependent variable for both functions, and graph

the equations

 = 3 + 1 and  =
3
√
− 1

We will talk more about graphs of inverse functions later in this chapter , but

for reference we give the following reformulation of the cancellation equations

in (14.3) using  as the independent variable for both  and −1

−1(()) =  for every  in the domain of 

(−1()) =  for every  in the domain of −1
(14.4)

The equations in (14.4) imply the following relationships between the do-

mains and ranges of  and −1 :

domain of −1 = range of 
range of −1 = domain of 

(14.5)

Example 14.4 Confirm that the inverse of () = 3 is −1() = 3
√


Solution:

−1(()) = −1(3) = 3
√
3 = 

(−1()) = ( 3
√
) =

¡
3
√

¢3
= 

¤

14.1.3 Existence of inverse functions

At the beginning of this section we observed that solving  = () = 3 + 1

for  as a function of  produces  = −1() = 3
√
 − 1 The following theorem

shows that this is not accidental.

Theorem 14.5 If an equation  = () can be solved for  as a function of

, say  = (), then  has an inverse and that inverse is () = −1()

Proof. Substituting  = () into  = () yields = (()), which confirms

the first equation in Definition 14.1, and substituting  = () into  = ()

yields  = (()), which confirms the second equation in Definition 14.1.

The procedure we used above for finding the inverse of a function  was

based on solving the equation  = () for  as a function of . This procedure

can fail for two reasons–the function  may not have an inverse, or it may

have an inverse but the equation  = () cannot be solved explicitly for  as
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a function of . Thus, it is important to establish conditions that ensure the

existence of an inverse, even if it cannot be found explicitly.

If a function  has an inverse, then it must assign distinct outputs to distinct

inputs. For example, the function () = 2 cannot have an inverse because

it assigns the same value to  = 2 and  = −2, namely, (2) = (−2) = 4

Thus, if () = 2 were to have an inverse, then the equation (2) = 4

would imply that −1(4) = 2, and the equation (−2) = 4 would imply that
−1(4) = −2. But this is impossible because −1(4) cannot have two different
values . Another way to see that () = 2 has no inverse is to attempt to

find the inverse by solving the equation  = 2 for  as a function of . We

run into trouble immediately because the resulting equation  = ±√ does
not express  as a single function of 

A function that assigns distinct outputs to distinct inputs is said to be

one-to-one or invertible, so we know from the preceding discussion that if a

function  has an inverse, then it must be one-to-one. The converse is also

true, thereby establishing the following theorem.

Theorem 14.6 A function has an inverse if and only if it is one-to-one.

Stated algebraically, a function  is one-to-one if and only if (1) = (2)

whenever 1 = 2; stated geometrically, a function  is one-to-one if and only

if the graph of  = () is cut at most once by any horizontal line (Figure

14.4). The latter statement together with Theorem 14.6 provides the following

geometric test for determining whether a function has an inverse.

Theorem 14.7 (The horizontal line test) A function has an inverse func-

tion if and only if its graph is cut at most once by any horizontal line.

Example 14.8 Use the horizontal line test to show that () = 2 has no

inverse but that () = 3 does.

Solution: Figure 14.3 shows a horizontal line that cuts the graph of  = 2

more than once, so () = 2 is not invertible. Figure 14.4 shows that the

graph of  = 3 is cut at most once by any horizontal line, so () = 3 is

invertible. (Recall from Example 14.4 that the inverse of () = 3 is −1() =
13).

14.1.4 Graphs of inverse functions

Our next objective is to explore the relationship between the graphs of  and

−1. For this purpose, it will be desirable to use  as the independent variable
for both functions so we can compare the graphs of  = () and  = −1().
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Fig. 14.3. Horizontal line test for () = 2
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Fig. 14.4. Horizontal line test for () = 3
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mirror �y�x�

Fig. 14.5. Function () = 3 and its inverse.

If ( ) is a point on the graph  = (), then  = (). This is equivalent to

the statement that  = −1(), which means that ( ) is a point on the graph
of  = −1(). In short, reversing the coordinates of a point on the graph of 
produces a point on the graph of −1. Similarly, reversing the coordinates of a
point on the graph of −1 produces a point on the graph of  (verify). However,
the geometric effect of reversing the coordinates of a point is to reflect that

point about the line  = , and hence the graphs of  = () and  = −1()
are reflections of one another about this line (Figure 14.5). In summary, we

have the following result.

Theorem 14.9 If  has an inverse, then the graphs of  = () and  =

−1() are reflections of one another about the line  = ; that is, each graph

is the mirror image of the other with respect to that line.
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�1.0 �0.5 0.5 1.0 1.5 2.0
x
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2.5

3.0

y

Fig. 14.6. Function () = 2 − + 1 defined on (−∞∞) fails the horizontal line
test.

Example 14.10 Determine if the function () = 2−+1 has an inverse.

If it exists, then find the inverse.

Solution: We note that (0) = (1) = 1. Thus,  is not one-to-one. We

can also plot the graph (Figure 14.6) of  and note that it fails the horizontal

line test.

However, observe that if we restrict the domain of  to an interval where 

is either increasing or decreasing, say [05∞), then
its inverse exists (see plot below—Figure 14.7).It can be easily checked, that

−1() =
1

2
(1 +

√−3 + 4)

is having range [05∞) which agrees with the restricted domain of  . Notice,
that the domain of −1() is equal to [34∞), which agrees with the range of
(restricted)  Lastly (Figure 14.8), a plot of the graphs of () and −1() (in
blue and red respectively) shows their expected symmetry about the diagonal

line  =  (dotted line). The plot below (Figure 14.9) illustrates how the slopes

of the two tangent lines, that of  at (2 3) and that of −1 at (3 2) (both in
green), are reciprocal. As you will see, this is not an accident. ¤
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Fig. 14.7. Function  restricted to an interval [05∞) where it is increasing.
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Fig. 14.8. Functions () and −1().
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Fig. 14.9. Slopes of the two tangent lines, that of  at (2 3) and that of −1 at (3 2)
are reciprocal.
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14.2 The derivative and inverse functions

In the previous sections we introduced the basics of inverse functions. Now

we’re going to explore interesting (and useful) connections between derivatives

and inverse functions.

14.2.1 Using the derivative to show that an inverse exists

Suppose that you have a differentiable function  whose derivative is always

positive. Then the function must be increasing. If our function  is always

increasing, then it must satisfy the horizontal line test. No horizontal line

could possibly hit the graph of  = () twice. Since the horizontal line test is

satisfied by  , we know that  has an inverse. This has given us a nice strategy

for showing that a function has an inverse: show that its derivative is always

positive on its domain.

Example 14.11 Suppose that

() =
1

3
3 − 22 + 5− 7

on the domain R (the whole real line). Does  has an inverse? It would be a
real mess to switch  and  in the equation  = 1

3
3 − 22 + 5− 7 and then

try to solve for . (Try it and see!) A much better way to show that  has an

inverse is to find the derivative. We get

 0() = 2 − 4+ 5 = (− 2)2 + 1

That is  0()  0 for all This means that  is increasing. In particular, 

satisfies the horizontal line test, so it has an inverse.

There are some variations. For example, if  0()  0 for all , then the

graph  = () is decreasing. The horizontal line test still works, though| the
graph is just going down and down, so it can’t come back up and hit the same

horizontal line twice. Another variation is that the derivative might be 0 for

an instant but positive everywhere else. This is OK as long as the derivative

doesn’t stay at 0 for a long time. Here’s a summary of the situation:

Theorem 14.12 (Derivatives and inverse functions) If  is differentiable

on its domain ( ) and any of the following are true:

1.  0()  0 for all  in (,);

2.  0()  0 for all  in (,);
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3.  0() ≥ 0 for all  in (,) and  0() = 0 for only a finite number of ;

4.  0() ≤ 0 for all  in (,) and  0() = 0 for only a finite number of ;

then  has an inverse. If instead the domain is of the form [,], or [,), or

(,], and  is continuous on the whole domain, then  still has an inverse if

any of the above four conditions are true.

Example 14.13 Suppose () = cos() on the domain (0,). Does  have an

inverse? Well, 0() = − sin(). We know that sin()  0 on the interval (0,)
—just look at its graph if you don’t believe this. Since 0() = − sin(), we see
that 0()  0 for all  in (0,). This means that  has an inverse. In fact,

we know that  has an inverse on all of [0,], since  is continuous there. The

idea is that (0) = 1, so  starts out at height 1; then, since 0()  0 when

0    , we know that  immediately gets lower than 1. Since () = −1,
the values of () go down to −1 without ever hitting the same value twice. So
 has an inverse on all of [0,]. We’ll come back to this particular function in

section 14.3 below.

Example 14.14 Finally, let () = 3 on all of R. We know that 0() =
32, which can’t be negative. So 0() ≥ 0 for all . Luckily, 0() = 0 only

when  = 0, so there’s just one little point where 0() = 0. That’s OK, so 

still has an inverse; in fact (as we know), −1() = 3
√
.

So the methods of this section won’t work, in general, when your function

has discontinuities or vertical asymptotes.

14.2.2 Finding the derivative of an inverse function

If you know that a function  has an inverse, which we’ll call −1 as usual,
then what’s the derivative of that inverse? Here’s how you find it. Start

off with the equation  = −1(). You can rewrite this as () = . Now

differentiate implicitly with respect to  to get




(()) =




() 

The right-hand side is easy: it’s just 1. To find the left-hand side, we use

implicit differentiation. If we set  = (), then by the chain rule (noting that

 =  0()), we have




(()) =




() =








=  0()
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Fig. 14.10. If  has slope , then its reflection 0 has slope 1

Now divide both sides by −1() to get the following principle:

if  = −1() then



=

1

 0()

If you want to express everything in terms of , then you have to replace  by

−1() to get



(−1()) =

1

 0(−1()) (14.6)

In words, this means that if  0(−1()) 6= 0 the derivative of the inverse is

basically the reciprocal of the derivative of the original function, except that

you have to evaluate this latter derivative at −1() instead of .
We can explain the result graphically as follows. Recall that the graph of

the inverse −1() is obtained by reflecting the graph of () through the line
 = . Now, consider a line  of slope  and let 0 be its reflection through
 =  as in Figure 14.10. Then the slope of 0 is 1. Indeed, if ( ) and
( ) are any two different points on , then ( ) and ( ) lie on 0 and

Slope of  =
− 

− 
 Slope of 0 =

− 

− 
| {z }

Reciprocal slopes

Figure 14.11 tells the rest of the story. Let () = −1(). The reflection of
the tangent line to  = () at  =  is the tangent line to  = () at  = 
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Fig. 14.11. The tangent line to the inverse  = () is the reflection of the tangent

line to  = ()

[where  = () and  = ()]. These tangent lines have reciprocal slopes, and

thus 0() = 1 0() = 1 0(()) as claimed in 14.6.

Example 14.15 Suppose that () = 3 as in Section 14.1.1 (Example 14.4),

above. We saw there  = () that  has an inverse, and we even have a way to

write it: −1() = 13. Of course, we could just use the rule for differentiating

 with respect to  ( is a rational number), but let’s try the above method.

We know that 0() = 32; if  = −1(), then




=

1

0()
=

1

32


Now we can solve the equation  = 3 for  to get  = 13 and substitute

into the above equation to get




=

1

3
¡
13

¢2 = 1

323


We could just have differentiated  = 13 and gotten the same answer without

nearly so much work. Nevertheless it’s nice to know that it all works out . ¤

Before we move on to another example, let’s just note that the derivative

of the inverse function doesn’t exist when  = 0, since the denominator 323
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vanishes. So even though the original function is differentiable everywhere, the

inverse isn’t differentiable everywhere: its derivative doesn’t exist at  = 0.

This is true in general, not just for the function  from above. If you have any

function which has an inverse, and it has slope 0 at the point (,), the inverse

function will have infinite slope at the point (,), and a vertical tangent line

there.

Example 14.16 Calculate 0(1), where () is the inverse of () = + 

Solution: We have  0() = 1 +  , thus () is strictly increasing on its

domain (−∞∞) and

0(1) =
1

 0((1))
=

1

 0()
=

1

1 + 
where  = (1)

We do not have to solve for () (which cannot be done explicitly in this case)

if we can compute  = (1) directly. By definition of the inverse, () = 1

and we see by inspection that (0) = 0 + 0 = 1 It must be the only solution

because the inverse exists. Therefore,  = 0 and the formula above yields

0(1) =
1

1 + 0
=
1

2
¤

Example 14.17 Set

() =
1

3
3 − 22 + 5− 7

We saw in Example 14.11 above that  has an inverse on all of R. If we set
 = −1(), then what is  in general? What is its value when  = −7?
To do the first part, all you have to do is to see that  0() = 2 − 4+ 5, so




=

1

 0()
=

1

2 − 4 + 5 

Note that it’s important to replace  by  here. Anyway, now we can solve the

second part. By the definition of  , we have

1

3
3 − 22 + 5 − 7 = −7

Now clearly  = 0 is a solution to this equation, and it must be the only

solution because the inverse exists. So, when −7, we have  = 0, and



=

1

(0)2 − 4 (0) + 5 =
1

5


More formally, one can write
¡
−1

¢0
(−7) = 1

5
 ¤
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Fig. 14.12. The graph of  = sin()

14.3 Inverse trigonometric functions

Now it’s time to investigate the inverse trig functions. We’ll see how to define

them, what their graphs look like, and how to differentiate them. Let’s look

at them one at a time, beginning with inverse sine.

14.3.1 Inverse sine

Let’s start by looking at the graph of  = sin() once again:Does the sine

function have an inverse? You can see from the above graph that the horizontal

line test fails pretty miserably. In fact, every horizontal line of height between

−1 and 1 intersects the graph infinitely many times, which is a lot more than
the zero or one time we can tolerate. So, using the tactic described in Section

14.1.4, we throw away as little of the domain as possible in order to pass the

horizontal line test. There are many options, but the sensible one is to restrict

the domain to the interval [−2,2]. Here’s the effect of this:
Clearly we can’t go to the right of 2 or else we’ll start repeating the values

immediately to the left of 2 as the curve dips back down. A similar thing

happens at −2. So, we’re stuck with our interval.
OK, if () = () with domain [−2,2], then it satisfies the horizontal

line test, so it has an inverse −1. We’ll write −1() as sin−1() or arcsin().

Remark 14.18 Beware: The first of these notations is a little confusing at

first, since sin−1() does not mean the same thing as (())−1, even though
sin2() = (())2 and 3() = (())3

So, what is the domain of the inverse sine function? Well, since the range of

() = sin() is [−1,1], the domain of the inverse function is [−1,1]. And since
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Fig. 14.13. Function sin() on the restricted domain [−2 2] passes the horizontal
line test.

the domain of our function  is [−2,2] (since that’s how we restricted the
domain), the range of the inverse is [−2,2].
How about the graph of  = sin−1()? We just have to take the restricted

graph of  = sin() and reflect it in the mirror line  = ; it looks like this (see

Figure 14.14):Note that since sin() is an odd function of , so is sin−1().
This is consistent with the above graphs.

Now let’s differentiate the inverse sine function. Set  = sin−1(); we want
to find . The snazziest way to do this is to write  = () and then

differentiate both sides implicitly with respect to :




() =




(sin()) 

The left-hand side is just 1, but the right-hand side needs the chain rule. You

should check that you get cos()



. So we have

1 = cos()




which simplifies to



=

1

cos()


Actually, we could have written this down immediately using the Formula

14.6 from above. Now, we really want the derivative in terms of , not . No

problem—we know that sin() = , so it shouldn’t be too hard to find cos().

In fact, cos2() + sin2() = 1, which means that cos2() + 2 = 1. This leads

to the equation cos() = ±√1− 2, so we have




= ± 1√

1− 2
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Fig. 14.14. The graph of  = sin−1()

But which is it? Plus or minus? If you look at the graph of  = sin−1() above,
you can see that the slope is always positive. This means that we have to take

the positive square root:




sin−1() =

1√
1− 2

for − 1    1 (14.7)

Note that sin−1() is not differentiable, even in the one-sided sense, at the
endpoints  = 1 and  = −1, since the denominator√1− 2 is 0 in both these

cases.

In addition to the derivative formula and the above graph, here’s a summary

of the important facts about the inverse sine function

sin−1 is odd; it has domain [−1,1] and range [−1 2] (14.8)

Now that you have a new derivative formula, you should become comfortable

using the product, quotient, and chain rules in association with it.

Example 14.19 Calculate  0(1
2
), where () = arcsin

¡
2
¢
.

Solution: By the chain rule




arcsin

¡
2
¢
=




sin−1

¡
2
¢

=
1√
1− 4





¡
2
¢

=
2√
1− 4
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 0
µ
1

2

¶
=

2
¡
1
2

¢q
1− (1

2
)4
=

1q
15
16

=
4√
15
≈ 10328 ¤

Example 14.20 Calculate 
¡
arcsin

¡
42
¢¢


Solution:





¡
arcsin

¡
42
¢¢
=

1q
1− (42)2

· 



¡
42
¢

| {z }
chain rule

=
8√

1− 164  ¤

Remark 14.21 We continue with the convention that if the domain of a func-

tion  is not specified explicitly, then it is understood to be the maximal set of

real numbers  for which () is a real number. In this case, the domain is the

set of real numbers  for which −1 ≤ 42 ≤ 1. This is the interval [−12 12].

The integral counterpart of (14.7) reads

R 1√
1− 2

 = arcsin+ . (14.9)

Example 14.22 Show that for   0Z
1√

2 − 2
 = arcsin




+

Solution: We change variables so that 2 is replaced by 1 and we can use

(14.9). To this end we set

 =    = 

Then Z
1√

2 − 2
 =

Z
 √

2 − 22

=

Z
 


√
1− 2

since 0

=

Z
√
1− 2

= arcsin+  = arcsin



+ ¤
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Fig. 14.15.

14.3.2 Inverse cosine

We’re going to repeat the procedure from the previous section in order to

understand the inverse cosine function. Start with the graph of  = cos():

Once again, no inverse. This time, restricting the domain to [−2,2]
won’t work, since the horizontal line test would fail and also we’d be throwing

away part of the range that would be useful. Already on the above graph, you

can see that the section between [0,] is highlighted and obeys the horizontal

line test, so that’s what we’ll use. We get an inverse function which we write as

cos−1 or arccos. Like inverse sine, the domain of inverse cosine is [−1,1], since
that’s the range of cosine. On the other hand, the range of inverse cosine is

[0,], since that’s the restricted domain of cosine that we’re using. The graph

of  = cos−1  is formed by reflecting the graph of  = cos() in the mirror

 = :

Example 14.23 Evaluate a) sin−1
³√

3
2

´
and b) cos−1

¡−1
2

¢
Solution:

a) We see that

sin−1
Ã√

3

2

!
=



3

because sin (3) =
√
32 and 3 belongs to the range [−2 2] of the

arcsin function (see Figure 14.14).

b) We have

cos−1
µ
−1
2

¶
=
2

3
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Fig. 14.16. The graph of  = cos−1()

x sin−1x cos−1x√
32 3 6√
22 4 4

12 6 3

−12 −6 23

−√22 −4 34

−√32 −3 56

Table 14.1. Table of common values for the arcsine and arccosine functions

because cos

µ
2

3

¶
= −1

2
and

2

3
belongs to the range [0 ] of the arccos

function. ¤
Using the same procedure illustrated in Example 14.23 , we can create the

following table of common values of the arcsine and arccosine function:

Remark 14.24 Notice that the graph shows that cos−1  is neither even nor
odd. This is despite the fact that cos() is an even function of !

Now it’s time to differentiate  = cos−1  with respect to . We do exactly
the same thing we did in the previous section obtaining




=

−1
±√1− 2
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Unlike the case of inverse sine, the graph of inverse cosine is all downhill, which

means that the slope is always negative, so we get




cos−1() = − 1√

1− 2
for − 1    1

Here are the other facts about inverse cosine that we collected above:

cos−1 is neither even nor odd; it has domain [−1,1] and range [0,].

Before we move on to the inverse tangent function, let’s just look at the

derivatives of inverse sine and inverse cosine side by side:




sin−1() =

1√
1− 2

and



cos−1() = − 1√

1− 2

The derivatives are negatives of each other! So,





¡
sin−1() + cos−1()

¢
=

1√
1− 2

− 1√
1− 2

= 0

It means that the function  = sin−1() + cos−1() has a constant slope 0,
which means that it’s flat. The value of this function at the point 0 can be

easily calculated, It is equal to 2 We’ve just used calculus to prove the

following identity:

sin−1() + cos−1() = 1 for any  in the interval [−1 1]

14.3.3 Inverse tangent

Let’s remember the graph of  = tan() (Figure 14.17):We’ll restrict the do-

main to (−2,2) so that we can get an inverse function tan−1, also written
as arctan. The domain of this function is the range of the tangent function,

which is all of R. The range of the inverse function is (−2,2), which
of course is the restricted domain of tan() that we’re using. The graph of

 = tan−1() is presented on Figure 14.18.Now tan−1() is an odd function of
, as you can see from the graph| it inherits its oddness from that of tan(),

in fact.

Now let’s differentiate  = tan−1() with respect to . Write  = tan()

and differentiate implicitly with respect to . Check to make sure that you

believe that



=

1

sec2 
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Fig. 14.17. The graph of  = tan().

Fig. 14.18. The graph of  = tan−1()
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Since sec2  = 1 + tan2  , and tan() = we see that sec2() = 1 + 2. This

means that



tan−1() =

1

1 + 2
for all real  (14.10)

We also have the following facts from above:

tan−1 is odd; it has domain R and range (−2 2) (14.11)

Unlike inverse sine and inverse cosine, the inverse tangent function has hor-

izontal asymptotes. (The first two functions don’t have a chance, since their

domains are both [−1,1].) As you can see from the graph above, tan−1()
tends to 2 as →∞, and it tends to −2 as → −∞. In fact, the verti-
cal asymptotes  = 2 and  = −2 of the tangent function have become
horizontal asymptotes of the inverse tan function. This means that we have

the following useful limits:

lim→∞ tan−1() = 2 and lim→−∞ tan−1() = −2
(14.12)

The integral counterpart of (14.10) reads

R 

1 + 2
= arctan+  (14.13)

Example 14.25 Show that, for  6= 0,
R 

2 + 2
=
1


arctan




+  (14.14)

Solution: We change variables so that a2 is replaced by 1 and we can use

(14.13). We set

 =    = 

Z


2 + 2
=

Z
 

2 (1 + 2)
=
1



Z


(1 + 2)

=
1


arctan+  =

1


arctan




+  ¤

Example 14.26 Evaluate Z


42 + 4+ 2
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Solution: We complete the square on the binomial 42 + 4:

42 + 4+ 2 = (2+ 1)2 + 1

Then, Z


42 + 4+ 2
=

Z


1 + (2+ 1)2

We change variables1 so that (2+1)2 is replaced by 2 and we can use (14.13).

We set

 = (2+ 1)


2
= 

Z


1 + (2+ 1)2
=

1

2

Z


1 + 2

=
1

2
arctan+  =

1

2
arctan(2+ 1) + ¤

Example 14.27 Evaluate
R 2
0



4 + 2


Solution: By 14.14Z


4 + 2
=

Z


22 + 2
=
1

2
arctan



2
+ 

and therefore Z 2

0



4 + 2
=

1

2
arctan



2
|20

=
1

2
arctan 1− 1

2
arctan 0 =

1

8
 ¤

14.3.4 Arc cotangent, arc secant, arc cosecant

These functions are not as important to us as the arc sine, arc cosine and arc

tangent, but they do deserve some attention.

Arc cotangent: The cotangent function is one-to-one on (0 ) and maps

that interval onto (−∞∞). The arc cotangent function

 = arccot  ∈ (−∞∞)
1This technique of integration will be developed later
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is the inverse of the function

 = cot  ∈ (0 )
Arc secant, arc cosecant: These functions can be defined explicitly in

terms of the arc cosine and the arc sine. For || ≥ 1, we set
arcsec = arccos(1) arccos = arcsin(1)

Easily you can check, that that for all || ≥ 1
sec(arcsec) =  and csc(arccos) = 

and

arctan+ arccot =


2
 (14.15)

arcsec+ arccsc =


2


Derivatives:



(arccot) = − 1

1 + 2




(arcsec) =

1

||√2 − 1




(arccsc) = − 1

||
√
2 − 1 

(14.16)

The derivatives of the arc sine, arc cosine and the arc tangent were calcu-

lated earlier. That the derivatives of the arc cotangent is as stated follows

immediately from (14.15). Once we show that




(arcsec) =

1

||√2 − 1
the last formula will follow from (14.15). Hence we focus on the arc secant.

Since

arcsec = arccos(1)

the chain rule gives




(arcsec) = − 1q

1− (1)2
· 



µ
1



¶

= −
√
2√

2 − 1

µ
− 1
2

¶
=

√
2

2
√
2 − 1 
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This tells us that




(arcsec) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1


√
2 − 1 for   1

− 1


√
2 − 1 for   −1

The statement



(arcsec) =

1

||
√
2 − 1

is just a summary of this result.
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L’Hospital’s rule and overview of limits

We’ve used limits to find derivatives. Now we’ll turn things upside-down and

use derivatives to find limits, by way of a nice technique called L’Hospital’s

Rule. After looking at various varieties of the rule, we’ll give a summary,

followed by an overview of all the methods we’ve used so far to evaluate limits.

So, we’ll look at:

• L’Hospital’s Rule, and four types of limits which naturally lead to using
the rule; and

• a summary of limit techniques from earlier chapters.

15.1 L’Hospital’s Rule

Most of the limits we’ve looked at are naturally in one of the following forms:

lim
→

()

()
lim
→

(()− ()) lim
→

()() and lim
→

()()

Sometimes you can just substitute  =  and evaluate the limit directly,

effectively using the continuity of  and . This method doesn’t always work,

though for example, consider the limits

lim
→3

2−9
− 3 lim

→0

µ
1

sin
− 1



¶
lim
→0+

 ln and lim
→0

(1 + 3 tan())
1


In the first case, replacing  by 3 gives the indeterminate form 00. The second

limit involves the difference between two terms which become infinite as → 0.

Actually, they both go to ∞ as → 0+ and -∞ as → 0−, so you can think
of the form in this case as ±(∞−∞). As for the third limit above (involving
 ln()), this leads to the form 0× (−∞), remembering that ln() → −∞ as

 → 0+. Finally, the fourth limit looks like 1∞, which is also problematic.
When we encountered one of these indeterminate forms earlier in the text,

we attempted to rewrite the expression by using various algebraic techniques.
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Fig. 15.1. The limit as  approaches 0 appears to be 1

However, not all indeterminate forms can be evaluated by algebraic manipula-

tion. This is often true when both algebraic and transcendental functions are

involved. For instance, the limit

lim
→0

 − 1


produces the indeterminate form 00 Rewriting the expression to obtain

lim
→0

µ



− 1



¶
merely produces another indeterminate form, ∞−∞ Of course, you could

use technology to estimate the limit, as shown in Figure 15.1. From and the

graph, the limit appears to be 1. (This limit will be verified in Example 15.4.)

Luckily, all four types can often be solved using L’Hospital’s Rule.

It turns out that the first type, involving the ratio ()(), is the most

suitable for applying the rule, so we’ll call it "Type ." The next two types,

involving () − () and ()(), both reduce directly to Type , so we’ll

call them Type 1 and Type 2, respectively. Finally, we’ll say that limits

involving exponentials like ()() are Type , since you can solve them by

reducing them to Type 2 and then back to Type . Let’s look at all these

types individually, then summarize the whole situation in Section 15.7 below.

15.2 Type : 00 case

Consider limits of the form

lim
→

()

()
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where  and  are nice differentiable functions. If () 6= 0, everything’s great—
you just substitute  =  to see that the limit is ()(). If () = 0 but

() 6= 0, then you’re dealing with a vertical asymptote at  =  and the above

limit is either ∞, −∞ or it doesn’t exist.

The only other possibility is that () = 0 and () = 0. That is, the fraction

()() is the indeterminate form 00. The majority of the limits we’ve

seen have been of this form. In fact, every derivative is of this form!

To prove the main theorem of this chapter, we can use a more general result

called the Extended Mean Value Theorem.

Theorem 15.1 (The Extended Mean Value Theorem) If  and  are

differentiable on an open interval ( ) and continuous on [ ]such that 0() 6=
0 for any  in ( ) then there exists a point  in ( ) such

 0()
0()

=
()− ()

()− ()


Proof. You can assume that () 6= () because otherwise, by Rolle’s The-

orem, it would follow that 0() = 0 for some  in ( ). Now, define ()

as

() = ()−
µ
()− ()

()− ()

¶
()

Then

() = ()−
µ
()− ()

()− ()

¶
() =

()()− ()()

()− ()

and

() = ()−
µ
()− ()

()− ()

¶
() =

()()− ()()

()− ()

and by Rolle’s Theorem there exists a point  in ( ) such that

0() =  0()−
µ
()− ()

()− ()

¶
0() = 0

which implies that

 0()
0()

=
()− ()

()− ()


To see why this is called the Extended Mean Value Theorem, consider the

special case in which () =  For this case, you obtain the “standard” Mean

Value Theorem as presented before
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Theorem 15.2 Let  and  be functions that are differentiable on an open

interval ( ) containing  except possibly at  itself. Assume that 0() 6= 0
for all  in ( ) except possibly at  itself. If the limit of ()() as

approaches  produces the indeterminate form 00 then

lim
→

()

()
= lim

→

 0()
0()

(15.1)

provided the limit on the right exists (or is infinite). This result also applies

if the limit of
()

()
as  approaches  produces any one of the indeterminate

forms ∞∞, (−∞) ∞, ∞ (−∞), or (−∞)  (−∞)
We can use the Extended Mean Value Theorem to prove L’Hopital’s Rule. Of

the several different cases of this rule, the proof of only one case is illustrated.

The remaining cases where → − and →  are left for you to prove.

Proof. Consider the case for which lim→+ () = 0 and lim→+ () = 0

Define the following new functions:

 () =

⎧⎨⎩
()  6= 

0  = 

and () =

⎧⎨⎩
()  6= 

0  = 

For any        and  are differentiable on ( ] and continuous

on ( ]We can apply the Extended Mean Value Theorem to conclude that

there exists a number  in ( ) such that

 0()
0()

=
 ()−  ()

()−()
=

 ()

()
=

 0()
0()

=
()

()

Finally, by letting approach  from the right → +, you have  → + because

     and

lim
→+

()

()
= lim

→+

 0()
0()

= lim
→+

 0()
0()



Example 15.3 Use L’Hospital’s Rule to evaluate the from the beginning of

the chapter:

lim
→3

2−9
− 3 

Solution: () = 2−9 and () =  − 3 are differentiable and (3) =

(3) = 0, so the quotient is indeterminate at  = 3:

2−9
− 3 |3 =

9− 9
3− 9 =

0

0
(indeterminate).



15.2 Type : 00 case 353

Furthermore, 0(3) = 1, and thus 0(3) is nonzero. Therefore, L’Hopital’s Rule
applies. We may replace the numerator and denominator by their derivatives

to obtain

lim
→3

2−9
− 3 =

2 · 3
1
= 6

By the way, you don’t need to use L’Hopital’s Rule here—you can just factor

2−9 as (− 3)(+ 3) like this

lim
→3

2−9
− 3 = lim

→3
(− 3)(+ 3)

− 3 = lim
→3

(+ 3) = 3 + 3 = 6

¤

Example 15.4 (Indeterminate form 00) Evaluate

lim
→0

 − 1




Solution: Because direct substitution results in the indeterminate form

00we can apply L’Hopital’s Rule, as shown below.

lim
→0

 − 1


= lim
→0



[ − 1]


[]

= lim
→0



1
= 1

¤
Here’s a harder example where the factoring trick doesn’t work:

Example 15.5 (Applying L’Hopital’s Rule more than once) Find

lim
→0

− sin
3

Solution: If you put  = 0, then both top and bottom are 0. The prin-

ciple that sin() behaves like  for small  is useless in this case, since we’re

taking the difference of the two quantities. So let’s apply L’Hopital’s Rule,

differentiating − sin and 3 separately:

lim
→0

− sin
3

= lim
→0

1− cos
32

We can actually solve right hand limit, using the trick of multiplying top and

bottom by 1 + cos(). There’s an easier way: just notice that the right-hand

limit is also of the form 00 when you replace  by 0 (since cos(0) = 1), so we

can use L’Hopital’s Rule again! We get

lim
→0

− sin
3

= lim
→0

1− cos
32

= lim
→0

sin

6
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We could actually use L’Hopital’s Rule once more to find the final limit, but

a better way is to write

lim
→0

sin

6
=
1

6
lim
→0

sin


=
1

6
× 1 = 1

6


¤

15.3 Type : ±∞±∞ case

L’Hopital’s Rule also works in the case where lim→() =∞ and lim→() =

∞. That is, when you try to put  = , the top and bottom both look infinite,

so you are dealing with the indeterminate form ∞∞.

Example 15.6 Evaluate

lim
→∞

ln




Solution: Because direct substitution results in the indeterminate form

∞∞ you can apply L’Hopital’s Rule to obtain

lim
→∞

ln


= lim

→∞



[ln]


[]

= lim
→∞

1


= 0

¤

Example 15.7 Evaluate

lim
→∞






Solution:

lim
→∞




= lim

→∞
1


= 0

¤
The last limit is 0 because  → ∞ as  → ∞. Also, the justification for

using L’Hopital’s Rule is that both  and  go to ∞ as →∞. Notice that
the denominator  was unscathed by the differentiation, but the numerator 

was knocked down to 1. This is even clearer when you consider the following

example.

Example 15.8 Find

lim
→∞

3
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Solution: Just use L’Hopital’s Rule three times, noting that in each case

we are dealing with the indeterminate form ∞∞

lim
→∞

3


= lim

→∞
32


= lim

→∞
6


= lim

→∞
6


= 0

Of course, the same technique applies to any power of ; you just have to apply

the rule enough times, knocking the power down by 1 each time, while the 

just sits there like some immovable lump. So we have proved the principle that

exponentials grow quickly. ¤
Warning: Please, please, please check that you have an indeterminate

form! The only acceptable forms for a quotient are 00 or ±∞ ±∞. For
example, if you try to use L’Hopital’s Rule on the limit

lim
→0

2

cos

you’ll get into a real tangle. Let’s see what happens:

lim
→0

2

cos

?
= lim

→0
2

− sin
?
= −2 lim

→0


sin
= −2

This is clearly wrong, since 2 and cos are both positive when  is near 0.

In fact, the correct solution is

lim
→0

2

cos
=

02

cos 0
=
0

1
= 0

Example 15.9 (Funy example) Let us calculate

lim
→∞

√
2 + 1

Solution: It is indeterminate form
∞
∞ . Let us apply L’Hospital’s Rule

lim
→∞

√
2 + 1

= lim
→∞



[]




h√
2 + 1

i = lim
→∞

1
√
2+1

= lim
→∞

√
2 + 1



This is
∞
∞ and we can try to use L’Hospital’s Rule again

lim
→∞

√
2 + 1

= lim
→∞

√
2 + 1


= lim

→∞




h√
2 + 1

i


[]

= lim
→∞

√
2 + 1
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This is
∞
∞  Should we use L’Hospital’s Rule again? No! (Because we are looping

! We are now exactly at the initial position! ) L’Hospital’s Rule does not work

here. But we can conclude, that If the limit is , then the procedure tells

that it is equal to 1. The limit must therefore be 1. We can use elementary

techniques to find that limit.

lim
→∞

√
2 + 1

= lim
→∞


√
2+1


= lim
→∞

1q
1 + 1

2

= 1

¤

15.4 Type 1: (∞−∞)
Here’s a limit from the beginning of this chapter:

lim
→0

µ
1

sin
− 1



¶
As → 0+, both 1 sin and 1 go to ∞. As → 0−, both quantities go to
−∞. Either way, you’re looking at the difference of two huge (positive or
negative) quantities, so we can express the indeterminate form as (∞−∞).
Luckily, it’s pretty easy to reduce this to Type . Just take a common

denominator:

lim
→0

µ
1

sin
− 1



¶
= lim

→0
− sin
 sin

Now you can put  = 0 and see that we are in the 00 case. So we can apply

L’Hopital’s Rule:

lim
→0

µ
1

sin
− 1



¶
= lim

→0
− sin
 sin

= lim
→0

1− cos
sin+  cos

Notice that we used the product rule to differentiate the denominator. In any

case, we are again in 00 territory|just put  = 0 and see that the top and

bottom both become 0. So we use L’Hopital’s Rule (and the product rule)

once more:

lim
→0

1− cos
sin+  cos

= lim
→0

sin

cos+ cos−  sin

Don’t use L’Hopital’s Rule again! At this stage, just put  = 0; the numerator

is 0 and the denominator is 2, so the overall limit is 0. Putting everything

together, we have shown that

lim
→0

µ
1

sin
− 1



¶
= 0
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Taking a common denominator doesn’t always work. Sometimes you might

not even have a denominator at all, so you have to create one out of thin air

(See Exercises book).

15.5 Type 2: (0×±∞)
Here’s a limit of this type:

lim
→0+

 ln

The limit has to be as  → 0+ since ln() isn’t even defined when  ≤ 0.
Now, as  → 0+, we see that  → 0 while ln → −∞, so we are dealing
with the indeterminate form 0 × −∞. Let’s turn the limit into Type  by

manufacturing a denominator. The idea is to move  into a new denominator

by putting it there as 1:

lim
→0+

 ln = lim
→0+

ln
1




Now the form is −∞∞, so we can use L’Hopital’s Rule:

lim
→0+

 ln = lim
→0+

ln
1


= lim
→0+

1


− 1
2



We can simplify the fraction on the right to −, so that the overall limit is

lim
→0+

(−) = 0

We’ve solved the problem, but let’s just check out something: why did we move

 into the denominator and not ln ? It’s true that

lim
→0+

 ln = lim
→0+



1 ln

= lim
→0+

1

(1) (−1(ln)2) (by L’Hopital’s Rule)

= lim
→0+

−(ln)2

This is actually worse than the original limit! So, take care when you choose

which factor to move down the bottom. As you can see from the above example,

moving a log term can be a bad idea—so avoid doing that.
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Fig. 15.2. The graph of sin()

15.6 Type :
¡
1±∞ 00 or ∞0

¢
Finally, the trickiest type involves limits like

lim
→0+

sin()

where both the base and exponent involve the dummy variable ( in this case).

The corresponding graph is presented in Fig. 15.2. If you just put  = 0,

you get 00, which is another indeterminate form. To find the limit, we’ll use a

technique very similar to logarithmic differentiation . The idea is to take the

logarithm of the quantity sin() first, and work out its limit as → 0+

lim
→0+

ln
³
sin()

´
By our log rules, the exponent sin() comes down out front of the logarithm

lim
→0+

ln
³
sin()

´
= lim

→0+
sin() ln

As  → 0+, we have sin() → 0 and ln → −∞, so now we’re dealing

with a Type 2 problem. We can put the sin() into a new denominator as

1 sin(), which is just csc(), then use L’Hopital’s Rule on the resulting Type

 problem:

lim
→0+

sin() ln = lim
→0+

ln

csc()

= lim
→0+

1

− csc() cot() (by L’Hopital’s Rule)
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This can be rearranged to

lim
→0+

−sin()


× tan() = −1× 0 = 0

Are we done? Not quite. We now know that

lim
→0+

ln
³
sin()

´
= 0;

so now we just have to exponentiate both sides to see that

lim
→0+

sin() = 1

(The exponentiation works because  is a continuous function of .)

Let’s review what we just did. Instead of finding the original limit, we took

logarithms and then found that limit, using the Type 2 technique. Finally,

we exponentiated at the end. In fact, sometimes you don’t even have to go

through the Type 2 step on your way to Type  Here ia our old friend:

Example 15.10 Evaluate

lim
→∞

µ
1 +

1



¶

using L’Hopital’s Rule.

Solution: Because direct substitution yields the indeterminate form 1∞

you can proceed as follows. To begin, assume that the limit exists and is equal

to .

 = lim
→∞

µ
1 +

1



¶

Taking the natural logarithm of each side produces

ln  = ln

∙
lim
→∞

µ
1 +

1



¶¸
= lim

→∞

∙
ln (1 + 1)

1

¸
indeterminate form 00

= lim
→∞

"¡−12¢ (1 (1 + 1))
−12

#
L0Hopital0s Rule

= lim
→∞

1

1 (1 + 1)
= 1
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Fig. 15.3. The limit of
¡
1 + 1



¢
as  approaches infinity is  The constant function

 =  is a horizontal asymptote.

Now, because you have shown that ln  = 1 you can conclude that and obtain

lim
→∞

µ
1 +

1



¶

= 

(see Figure 15.3.) ¤
Check, that lim→0+

¡
1 + 1



¢
= 1

15.7 Summary of L’Hopital’s Rule types

Here are all the techniques we’ve looked at:

• Type : if the limit involves a fraction, like

lim
→

()

()

check that the form is indeterminate. It must be 00 or ±∞±∞

Use the rule

lim
→

()

()
= lim

→

 0()
0()

Do not use the quotient rule here! Now, solve the new limit, perhaps

even using L’Hopital’s Rule again.

• Type 1: if the limit involves a difference, like

lim
→

(()− ()) 
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where the form is ±(∞ − ∞), try taking a common denominator or
multiplying by a conjugate expression to reduce to a Type  form.

• Type 2: if the limit involves a product, like

lim
→

()()

where the form is 0×±∞, pick the simplest of the two factors and put
it on the bottom as its reciprocal. (Avoid picking a log term—keep that

on the top.) You get something like

lim
→

()() = lim
→

()
1

()

This is now a Type  form.

• Type : if the limit involves an exponential where both base and expo-
nent involve the dummy variable, like

lim
→

()()

then first work out the limit of the logarithm:

lim
→

ln
³
()()

´
= lim

→
() ln ()

This should be either Type 2 or Type  (or else it’s not indeterminate

and you can just substitute). Once you’ve solved it, you can rewrite the

equation as something like

lim
→

ln
³
()()

´
= 

then exponentiate both sides to get

lim
→

()() = 

Now all that’s left is for you to practice doing as many l’H^opital’s Rule

problems as you can get your hands on!
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16

Applications of integration

In Chapter 10, we calculated areas using definite integrals. We obtained the

integral by slicing up the region, constructing a Riemann sum, and then taking

a limit. In this section, we will discuss how integration allows us to calculate

the volume of solid regions for which we’re given the area of cross sections

which are perpendicular to some axis. We will look at many examples in which

the solids are solids of revolution, solids obtained by revolving a plane region

around an axis and looking at the solid region which is “swept out”. In the

context of solids of revolution, integrating the cross-sectional area is referred to

as the disk method or washer method, due to the shapes of the cross sections.

We will also look at a second method for finding the volumes of solids of

revolution; this method has some aspects that are similar to the disk and

washer methods, but it does not use planar cross sections of the solid. This

second method for finding volumes of solids of revolution is the cylindrical

shell method. Solids of revolution are used commonly in engineering and man-

ufacturing. Some examples are axles, funnels, pills, bottles, pistons etc.

16.1 Volume by parallel cross sections

Figure 16.1 shows a plane region Ω and a solid formed by translating Ω along

a line perpendicular to the plane of Ω. Such a solid is called a right cylinder

with cross section Ω.

If Ω has area  and the solid has height , then the volume of the solid is

a simple product:

 =  · 

To calculate the volume of a more general solid, we introduce a coordinate

axis and then examine the cross sections of the solid that are perpendicular to

that axis. In Figure 16.2 we depict a solid and a coordinate axis that we label

the -axis. As in the figure, we suppose that the solid lies entirely between

 =  and  = . The figure shows an arbitrary cross section perpendicular to

the -axis. By () we mean the area of the cross section at coordinate .
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Fig. 16.1. Right cylinder with cross section Ω

Fig. 16.2. An arbitrary cross section with area () perpendicular to the -axis.
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Fig. 16.3. A slab of cross-sectional area (∗ ) and thickness ∆ .

If the cross-sectional area () varies continuously with , then we can find

the volume  of the solid by integrating () from  =  to  = :

 =

Z 



() (16.1)

Derivation of the formula. Let  = {0 1 2  } be a partition of
[ ]. On each subinterval [−1 ] choose a point ∗ . The solid from −1 to
 can be approximated by a slab of cross-sectional area (

∗
 ) and thickness

∆ (Figure 16.3). The volume of this slab is the product

(∗ )∆ (16.2)

The sum of these products,

(∗1)∆1 +(∗2)∆2 + +(∗)∆

is a Riemann sum which approximates the volume of the entire solid. As

∆ = max{∆ : 1 ≤  ≤ } tends to zero such Riemann sums converge toZ 



()

which is called the volume of the solid.
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Example 16.1 A solid’s base is the unit disc in the -plane, and its vertical

cross-sections parallel to the -axis are squares. Find the volume of the solid.

Solution:

Area of the cross-section:

 =

Z 1

−1
() =

Z 1

−1
4(1− 2)

= 2

Z 1

0

4(1− 2) = 8(− 1
3
3)|10

= 8

µ
2

3
− 0
¶
=
16

3

¤

Example 16.2 A solid whose base is the planar region in which

0 ≤  ≤ 2(1− 2)

has square vertical cross-sections parallel to the -axis. Find the volume of the

solid.
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Solution:

 =

Z 1

−1
() =

Z 1

−1
4(1− 2)2

= 8

Z 1

0

(1− 2)2

= 8

Z 1

0

(4 − 22 + 1)

= 8(
1

5
5 − 2

3
3 + )|10 =

64

15

¤

Remark 16.3  = () is called the volume differential. Think of this

as the volume of a typical "slice" with the thickness 

Example 16.4 (Cavalieri’s principle) Cavalieri’s principle says that solids

with equal altitudes and identical cross-sectional areas at each height have the

same volume (Figure 6.7). This follows immediately from the definition of vol-

ume, because the cross-sectional area function () and the interval [ ] are

the same for both solids (see Figure 16.4)

¤

16.2 The disc method

If a region in the plane is revolved about a line, the resulting solid is a solid of

revolution, and the line is called the axis of revolution. The simplest such solid

is a right circular cylinder or disk, which is formed by revolving a rectangle
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Fig. 16.4. Cavalieri’s principle: These solids have the same volume, which can be

illustrated with stacks of coins.

Fig. 16.5. Volume of a disc: 2
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Fig. 16.6. A typical  cross section of a solid

about an axis adjacent to one side of the rectangle, as shown in Figure 16.5.

The volume of such a discis

Volume of disk = (  )× (  ) = 2

where  is the radius of the disk and  is the width. We can suppose that

() ≥ 0 for  ≤  ≤ 

To see how to use the volume of a disk to find the volume of a general solid

of revolution, consider a solid of revolution formed by revolving the plane

region in Figure 16.9 about the indicated axis. To determine the volume of

this solid, consider a representative rectangle in the plane region with a base

∆. When this rectangle is revolved about the axis of revolution (see Fig.

16.10), it generates a representative disk whose volume is

∆ = 2∆

Approximating the volume of the solid by such disks of width ∆ and radius

() produces

Volume of solid ≈
X
=1

()
2∆ = 

X
=1

()
2∆

Here each  belongs to the base of the corresponding revolved rectangle.
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Fig. 16.7. Plane region (Example 16.5).

This approximation appears to become better and better as∆ = max{∆ :
1 ≤  ≤ }→ 0 when →∞ So, you can define the volume of the solid as

Volume of solid= lim
∆→0



X
=1

2()∆ = 

Z 



2() (16.3)

Example 16.5 Using the Disk Method find the volume of the solid formed by

revolving the region bounded by the graph of

() =
√
sin

and the -axis (0 ≤  ≤ ) about the -axis.

Solution: From the representative rectangle in the upper graph in Figure

16.7, you can see that the radius of this solid is

() = () =
√
sin

So, the volume of the solid of revolution is

 = 

Z 



[()]2  = 

Z 

0

h√
sin

i2


= 

Z 

0

sin =  [− cos]0
= (1 + 1) = 2
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Fig. 16.8. Sphere of radius 

Solid of revolution (Example 16.5) Approximation by  disks

Example 16.6 In this example we will use the disc method to show, that the

volume of a sphere of radius  is

 =
4

3
3

If we place the sphere so that its center is at the origin (see Figure 16.8),

then the plane  intersects the sphere in a circle whose radius (from the

Pythagorean Theorem) is  =
√
2 − 2. So the cross-sectional area is () =

2 = (2 − 2) Using the definition of volume with  = − and  = , we
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Fig. 16.9. Representative rectangle of width ∆

have

 =

Z 

−
() =

Z 

−

¡
2 − 2

¢


= 2

Z 

0

¡
2 − 2

¢


= 2

∙
2− 1

3
3
¸
0

=
4

3
3

¤

Example 16.7 This example illustrates a technique for calculating the vol-

ume of a solid of revolution. In particular, the solid we consider is formed by

revolving the curve  = − from  = 0 to  = 1 about the -axis. To find

the volume of this solid, we first divide the region in the -plane into  thin

vertical strips (rectangles) of thickness ∆ ( ∆ = 15 in Fig. 16.9). As each

rectangle is rotated about the -axis, it forms a slice that looks like a circular

disk (Fig. 16.10). It is easy to write the formula for the approximate radius

of this disk in terms of . (Here  = −.) We can use this radius to state a
formula for the approximate volume of this slice (where each  belongs to the

base of the corresponding revolved rectangle)

Volume of the slice ≈ 2∆ = (−)2∆

We can approximate the total volume of the solid by adding up the volumes of

a finite number of these slices (disks), so (Fig. 16.11)

Total volume ≈
X

2∆ =
X

(−)2∆
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Fig. 16.10. A thin strip rotated around the -axis to form a circular slice.

Fig. 16.11. Total volume of the solid is approximated by adding up the volumes of a

finite number of slices .
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Fig. 16.12. As ∆→ 0 we get the exact volume of the solid using an integral.

Particularly, for different values of  we have (in this example)

 ∆ Volume of  slices (in 3)

5 15 1 349 20

10 110 1 355 95

30 130 1 357 90

As the thickness of the slices, ∆, tends to zero (Fig.16.12), we get the exact

volume of the solid using an integral.

Total volume ≈
Z 1

0

(−)2 = 

Z 1

0

(−)2 = 

µ
−1
2

¶
−2|10

= 

µ
−1
2

¶¡
−2 − 0

¢
=



2

¡
1− −2

¢
= 1 358 212 (3)

¤

Example 16.8 (Revolving About a Line That Is’t a Coordinate Axis)

Find the volume of the solid formed by revolving the region bounded by

() = 2− 2

and () = 1 about the line  = 1 as shown in Figure 16.13.
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Fig. 16.13. Plane region (Example 16.8)

Solution: By equating () and () you can determine that the two

graphs intersect when  = ±1 To find the radius, subtract () from ()

() = ()− ()

= (2− 2)− 1
= 1− 2

Finally, integrate between −1 and 1 to find the volume

 = 

Z 



[()]2 

= 

Z 1

−1
(1− 2)2

= 

Z 1

−1
(4 − 22 + 1)

= 

∙
1

5
5 − 2

3
3 + 

¸1
−1

=
16

15

¤
Note that you can determine the variable of integration by placing a repre-

sentative rectangle in the plane region “perpendicular” to the axis of revolu-

tion. If the width of the rectangle is ∆ integrate with respect to  and if the
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Fig. 16.14. Solid of revolution (Example 16.8)

Fig. 16.15. Horizontal versus vertical axis of revolution.

width of the rectangle is ∆ integrate with respect to . To find the volume of

a solid of revolution with the disk method, use one of the following, as shown

in Figure 16.15.

Example 16.9 In this example we will find the volume of the solid obtained

by rotating the region bounded by  = 3,  = 8, and  = 0 about the -axis.

The region is shown in Figure 16.16(a) and the resulting solid is shown in

Figure 16.16(b). Because the region is rotated about the -axis, it makes sense

to slice the solid perpendicular to the -axis and therefore to integrate
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Fig. 16.16. Solid obtained by rotating the region bounded by  = 3,  = 8, and  = 0

about the -axis.

with respect to . If we slice at height , we get a circular disk with radius

, where  = 3
√
. So the area of a cross-section through  is

() = 2 =  ( 3
√
)2 = 23

and the volume of the approximating cylinder pictured in Figure 16.16(b) is

()∆ = 23∆

Since the solid lies between  = 0 and  = 8, its volume is

 =

Z 8

0

23 =

∙
3

5


5
3

¸8
0

=
96

5


¤

16.3 The washer method

The disk method can be extended to cover solids of revolution with holes by

replacing the representative disk with a representative washer. The washer is
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Fig. 16.17. Revolving rectangle

formed by revolving a rectangle

about an axis, as shown in Figure 16.17. If and are the inner  and outer radii

 of the washer and  is the width of the washer, the volume is given by


¡
2 − 2

¢
 (16.4)

To see how this concept can be used to find the volume of a solid of revolution,

consider a region bounded by an outer radius () and an inner radius ()

as shown in Figure 16.18. If the region is revolved about its axis of revolution,
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Fig. 16.18. Representative element in the washer method

the volume of the resulting solid is given by

 = 

Z 



¡
2()− 2()

¢


Note that the integral involving the inner radius represents the volume of

the hole and is subtracted from the integral involving the outer radius.

Example 16.10 In this another example where we are visualizing the process

of finding the volume of a solid of revolution. It illustrates a technique for

calculating the volume of a solid of revolution. In this example, we consider

the solid that is formed by revolving the region bounded by the curves  =  and

 = 2 about the line  = 3 . To find the volume of this solid, we first divide the

region in the -plane into  thin vertical strips (rectangles) of thickness ∆.

As each rectangle (see Fig. 16.19)is rotated about the line  = 3, it forms a disk

with a hole in it (Fig. 16.20 ). This disk with a hole in it has an approximate

inner radius of () = 3 −  and it has an approximate outer radius of

() = 3 − 2. Think of the slice as a circular disc of radius  from

which has been removed a smaller disc of radius  Using these radii we

can generate a formula for the approximate volume of this disk with a hole in

it (slice).

 = 2∆− 2∆
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Fig. 16.19. Region in the -plane into  = 7 thin vertical strips

Fig. 16.20. Representative rectangle rotated about the line  = 3 forms a disk with a

hole in it.
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Fig. 16.21. We can approximate the total volume of the solid by adding up the volumes

of a finite number of slices.

or

 = (3− 2)2∆− (3− )2∆ = [(3− 2)2 − (3− )2]∆

We can approximate the total volume of the solid by adding up the volumes of

a finite number of these slices (Fig. 16.21 )

Total volume ≈
X¡

2∆− 2∆
¢
=
X

[(3− 2)2 − (3− )2]∆

Particularly, for different values of  we have (in this example)

 ∆ Volume of  slices (in 3)

5 15 2 775 22

10 110 2 733 58

30 130 2 724 68

As the thickness of the slices, ∆, tends to zero, we get the exact volume

of the solid using an integral.Since the curves  =  and  = 2 intersect at

 = 0 and  = 1, these are the limits of integration:

 =

Z 1

0

[(3− 2)2 − (3− )2] = 

Z 1

0

[(3− 2)2 − (3− )2]

= 

Z 1

0

¡¡
4 − 62 + 9¢− ¡2 − 6+ 9¢¢ 

= 

Z 1

0

¡
4 − 72 + 6¢  = 13

15
 = 2 722 714
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Fig. 16.22. As the thickness of the slices, ∆, tends to zero, we get the exact volume

of the solid using an integral.

¤.

Example 16.11 The region between the graphs of sin and  on [0 2] is

revolved about the  axis. Sketch the resulting solid and find its volume.

Solution: The solid is sketched in Fig. 16.23. It has the form of a hollowed-

out cone.The volume is that of the cone minus that of the hole. The cone is

obtained by revolving the region under the graph of  on [0 2] about the

axis, so its volume is



Z 2

0

2 =
1

24
4

The hole is obtained by revolving the region under the graph of sin on [0 2]

about the  axis, so its volume is



Z 2

0

sin2  = 

Z 2

0

1− cos 2
2

 since cos 2 = 1− 2 sin2 

= 

µ


2
− 1
4
sin 2

¶
|20

=
1

4
2

Thus the volume of our solid is  = 1
24
4 − 1

4
2 = 15913 ¤
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Fig. 16.23. The region between the graphs of sin and  is revolved about the  axis.

Example 16.12 (Integrating with Respect to , Two-Integral Case)

Find the volume of the solid formed by revolving the region bounded by the

graphs of  = 2 + 1  = 0  = 0, and − 1 and about the -axis, as shown
in Figure below

Solution: For the region shown in Figure above, the outer radius is simply

 = 1 There is, however, no convenient formula that represents the inner

radius. When 0 ≤  ≤ 1  = 0 but when 1 ≤  ≤ 2  is determined by the
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equation  = 2 + 1 which implies that  =
√
 − 1

() =

⎧⎨⎩
0 0 ≤  ≤ 1

√
 − 1 1 ≤  ≤ 2

Using this definition of the inner radius, you can use two integrals to find the

volume

 = 

Z 1

0

¡
12 − 02¢  + 

Z 2

1

µ
12 −

³p
 − 1

´2¶


= 

Z 1

0

1 + 

Z 2

1

(2− ) 

= |10 + 

µ
2 − 2

2

¶
|21

=  + 

µ
4− 2− 2 + 1

2

¶
=
3

2


¤

16.4 The method of cylindrical shells

In this section, we will study an alternative method for finding the volume

of a solid of revolution. This method is called the shell method because it

uses cylindrical shells. A comparison of the advantages of the disk and shell

methods is given later in this section.

To begin, consider a representative (brown) rectangle as shown in Figure

16.24, where  is the width of the rectangle,  is the height of the rectangle,

and  is the distance between the axis of revolution and the center of the

rectangle. When this rectangle is revolved about its axis of revolution, it forms

a cylindrical shell (or tube) of thickness 

To find the volume of this shell, consider two cylinders. The radius of the

larger cylinder corresponds to the outer radius of the shell, and the radius of

the smaller cylinder corresponds to the inner radius of the shell. Because  is

the average radius of the shell, you know the outer radius is +(2) and the

inner radius is + (2)
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Fig. 16.24. Cylindrical shell

So, the volume of the shell is

Volume of shell = (volume of cylinder)− (volume of hole)
= 

³
+



2

´2
− 

³
− 

2

´2


= 2

= 2 (average radius) (height) (thickness)

Now, we can use this formula to find the volume of a solid of revolution.

Assume that the plane region in Figure 16.25 is revolved about a line to form

the indicated solid. If you consider a vertical rectangle of width ∆ then, as

the plane region is revolved about a line parallel to the -axis, the rectangle

generates a representative shell whose volume is

∆ = 2 [()()]∆

We can approximate the volume of the solid by such shells of thickness ∆

height () and average radius ()

Volume of solid ≈
X
=1

2 [()()]∆ = 2

X
=1

[()()]∆
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Fig. 16.25.

This approximation appears to become better and better as∆→ 0 (→∞).
So, the volume of the solid is:

Volume of solid = lim
∆→0

2

X
=1

[()()]∆ = 2

Z 



[()()] 

The shell method:

To find the volume of a solid of revolution with the shell method, use one of

the following, as shown in Figure below.

Vertical axis of revolution Horizontal axis of revolution

Volume= = 2
R 

[()()]  Volume= = 2

R 

[()()] 

Vertical axis of revolution Horizontal axis of revolution

Example 16.13 (Using the Shell Method) Find the volume of the solid

formed by revolving the region in the first quadrant bounded by  =
√
 ,
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0 ≤  ≤ 3, about the -axis.
Solution: The volume of a representative shell is 2()()∆, which

equals 2
√
∆ (Figure 16.25). The volume is the following definite integral:

 = 2

Z 3

0


√
 = 2

Z 3

0

32 =
36

5

√
3

¤

Example 16.14 Let R be the region between the graph of  = 2 (on the

bottom) and  =
√
 on top. Using the Shell Method find the volume of the

solid obtained by revolving R about the -axis.

Solution:

 = 2

Z 1

0

(
√
− 2) =

3

10


The representative rectangle (in red).
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A representative rectangle (in red) revolvs about -axis.

Volume of this solid approximates the volume of the original solid.
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¤

Example 16.15 Let R be the region in which  ≤  ≤ 4 − 32 Find the
volume of the solid obtained by revolving R about the -axis.

Solution:

 = 2 · 3(− 2) = 6(2 − 3)

 = 6

Z 1

0

(2 − 3) = −1
2
3 (3− 4) |10 =

1

2


¤

16.4.1 Comparison of Disk and Shell Methods

The disk and shell methods can be distinguished as follows. For the disk

method, the representative rectangle is always perpendicular to the axis of

revolution (Figure 16.26), whereas for the shell method, the representative

rectangle is always parallel to the axis of revolution, as shown in Figure 16.27

Often, one method is more convenient to use than the other. The following

example illustrates a case in which the shell method is preferable.
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Fig. 16.26. Disk method: Representative rectangle is perpendicular to the axis of

revolution.

Fig. 16.27. Shell method: Representative rectangle is parallel to the axis of revolution.
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Example 16.16 Find the volume of the solid formed by revolving the region

bounded by the graphs of  = 2 + 1  = 0  = 0, and  = 1 and about the

-axis, as shown in figure of Example 16.12.

Solution: In Example 16.12 in the preceding section, you saw that the

washer method requires two integrals to determine the volume of this solid.

The shell method requires only one integral to find the volume.

 = 2

Z 



()()

= 2

Z 




¡
2 + 1)

¢


= 2

∙
4

4
+

2

2

¸
|10

= 2

µ
3

4

¶
=

3

2


¤

Example 16.17 The ellipse
2

25
+

2

9
= 1 is revolved about the -axis. Cal-

culate the volume of the resulting football-shaped solid.

Solution: We first solve for 2

2

25
+

2

9
= 1⇒ 2 =

9

25
(25− 2)

Hence, the equation for the upper half of the ellipse is :

 =
3

5

p
25− 2
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The volume is therefore

 = 

Z 5

−5

∙
3

5

p
25− 2

¸2


= 

Z 5

−5

9

25
(25− 2) = 60

Note that if the ellipse had been rotated about the -axis, then the volume

of the resulting solid would be 100 . Try using Figure above to set up the

integral for the volume using the shell method. Does the integral seem more

complicated?

¤



17

Arc Length and Surface Area

In addition to being able to use definite integrals to find the areas of certain

geometric regions, we can also use the definite integral to find the length of a

portion of a curve.

17.1 Finding the length of a plane curve

Our first objective is to define what we mean by the length (also called the arc

length) of a plane curve  = () over an interval [ ] (Figure 17.1). Once

that is done we will be able to focus on the problem of computing arc lengths.

To avoid some complications that would otherwise occur, we will impose the

requirement that  0 be continuous on [ ], in which case we will say that
 = () is a smooth curve on [ ] or that  is a smooth function on [ ]

Thus, we will be concerned with the following problem.

Suppose that  = () is a smooth curve on the in interval [ ].

Define and find a formula for the arc length  of the curve  = ()

over the interval [ ].

To define the arc length of a curve we start by breaking the curve into small

segments. Then we approximate the curve segments by line segments and add

the lengths of the line segments to form a Riemann sum. Such line segments

tend to become better and better approximations to a curve as the number of

segments increases. As the number of segments increases, the corresponding

Riemann sums approach a definite integral whose value we will take to be the

arc length  of the curve.

To implement our idea for solving our problem , divide the interval [ ]

into  subintervals by inserting points   1  2    −1   between

 = 0 and  = . As shown in Figure 17.2, let 0 1   be the points on

the curve with -coordinates  = 0, 1, 2, . . . , −1,  =  and join these

points with straight line segments. These line segments form a polygonal path

that we can regard as an piecewise approximation to the curve  = ().
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Fig. 17.1. Portion of a plane curve.

Fig. 17.2. Piecewise linear apptoximation to the curvr ()
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Fig. 17.3. th line segment in the polygonal path.

As indicated in Figure 17.3, the length  of the th line segment in the

polygonal path is (by the Pythagorean theorem)

 =

q
(∆)

2 + (∆)
2 =

q
(∆)

2 + (()− (−1))
2 (17.1)

If we now add the lengths of these line segments, we obtain the following

approximation to the length  of the curve

 ≈
X

=1

 =

X
=1

q
(∆)

2 + (()− (−1))
2 (17.2)

To put this in the form of a Riemann sum we will apply the Mean-Value

Theorem. This theorem implies that there is a point ∗ between −1 and 
such that

()− (−1)
 − −1

=  0(∗) or ()− (−1) =  0(∗) ( − −1)

and hence we can rewrite (17.2) as

 ≈
X

=1

q
(∆)

2 +
¡
 0(∗)

¢2
(∆)

2 =

X
=1

q
1 +

¡
 0(∗)

¢2
∆

Thus, taking the limit as  increases and the widths of all the subintervals

approach zero yields the following integral that defines the arc length :

 = lim
max∆→0

X
=1

q
1 +

¡
 0(∗)

¢2
∆ =

Z 



q
1 + ( 0())2
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In summary, we have the following definition.

If  = () is a smooth curve on the interval [ ], then the arc length  of

this curve over [ ] is defined as

 =

Z 



q
1 + ( 0())2 (17.3)

This result provides both a definition and a formula for computing arc lengths.

First we will check chow it works on a very elementary example.

Remark 17.1 Even if the function () is relatively simple, the integral 17.3

can be very difficult to determine. Usually we use numerical procedures to

approximate the exact value of 

Example 17.2 Find the length of the line segment from (0 0) to (3 4).

Solution: We already know that the length of the segment can be calcu-

lated by the distance formula:

 =
p
32 + 42 =

√
25 = 5

Let’s verify this with the arc length formula. The equation of the line segment

is () = 4
3
 0 ≤  ≤ 3 Because  0() = 4

3
the length of the line segment is

 =

Z 



q
1 + ( 0())2 =

Z 3

0

s
1 +

µ
4

3

¶2
 =

Z 3

0

5

3
 = 5

as expected. ¤

Example 17.3 Find the arc length of the graph of the function () = 2
3
(2+

1)32 over the interval 0 ≤  ≤ 1.
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Solution:

() =
2

3
(2 + 1)32

 0() = 2
p
2 + 1

1 +
¡
 0()

¢2
=
¡
22 + 1

¢2
Fortunately, 1 + ( 0())2 is a square, so we can easily compute the arc length

 =

Z 1

0

q
1 + ( 0())2 =

Z 1

0

¡
22 + 1

¢
 =

5

3

¤

Example 17.4 Find the arc length of the graph of the function () =
4

8
+

1

42
over the interval 1 ≤  ≤ 3

Solution:

() =
4

8
+

1

42

 0() =
1

2
3 − 1

23

1 +
¡
 0()

¢2
=

µ
1

23
− 1
2
3
¶2
+ 1 =

µ
1

23
+
1

2
3
¶2

 =

Z 3

1

q
1 + ( 0())2 =

Z 3

1

µ
1

23
+
1

2
3
¶
 =

92

9

¤

17.2 Surface Area

In this section we will consider the problem of finding the area of a surface

that is generated by revolving a plane curve about a line.

In this section we will be concerned with the following problem

Suppose that  = () is a smooth nonnegative function on [ ],

and that a surface of revolution is generated by revolving the portion

of the curve  = () between  =  and  =  about the -axis (Fig. 17.4)

Define what is meant by the   of the surface, and find a formula

for computing it.
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Fig. 17.4. Surface of revolution generated by a revolving curve  = ()

Fig. 17.5. Lateral surface area of the frustum of a right circular cone.

A surface of revolution is a surface that is generated by revolving a plane

curve about an axis that lies in the same plane as the curve. For example,

the surface of a sphere can be generated by revolving a semicircle about its

diameter, and the lateral surface of a right circular cylinder can be generated

by revolving a line segment about an axis that is parallel to it (Figure 17.4).

The area of a surface of revolution is derived from the formula for the lateral

surface area of the frustum of a right circular cone with the vertex at the

origin. Consider the line segment in Figure 17.5, where  is the length of the

line segment, 1 is the radius at the left end of the line segment, and 2 is the

radius at the right end of the line segment. When the line segment is revolved

about its axis of revolution, it forms a frustum of a right circular cone, with

lateral surface area of frustum

 = 2

where

 =
1

2
(1 + 2)
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Fig. 17.6. Line segment between points (−1 (−1)) and ( ())

is an average radius of frustum.

This result can be generalized to any linear function () = +  that is

positive on the interval ( ). That is, the surface area of the frustum generated

by revolving the line segment between ( ()) and ( ()) about the -axis

is given by

(() + ()) (17.4)

where

 =
p
(− )2 + (− )2 = (− )

p
2 + 1 (17.5)

With the surface area formula for a frustum of a cone, we now derive a general

area formula for a surface of revolution. We assume the surface is generated

by revolving the graph of a positive, continuously differentiable function  on

the interval [ ] about the -axis. We begin by subdividing the interval [ ]

into n subintervals of equal length

∆ =
− 



The grid points in this partition are

0 =   1  2  −1  = 

Now consider the th subinterval [−1 ] and the line segment between the
points (−1 (−1)) and ( ()) (Figure 17.6). We let the change in the
-coordinates between these points be ∆ = ()− (−1).When this line
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Fig. 17.7. A frustum of a cone generated by a line segment.

segment is revolved about the -axis, it generates a frustum of a cone (Figure

17.7). The slant height of this frustum is the length of the hypotenuse of a

right triangle whose sides have lengths ∆ and |∆| . Therefore, the slant
height of the th frustum isq

(∆)2 + |∆|2 =
q
(∆)2 + (∆)

2

and its surface area is

 = (() + (−1))
q
(∆)2 + (∆)

2

It follows that the area  of the entire surface of revolution is approximately

the sum of the surface areas of the individual frustums , for  = 1  ;

that is,

 ≈
X

=1

(() + (−1))
q
(∆)2 + (∆)

2 (17.6)

We would like to identify this sum as a Riemann sum. However, one more step

is required to put it in the correct form. We apply the Mean Value Theorem1

on the th subinterval [−1 ] and observe that

()− (−1)
∆

=  0(∗)

1Notice that  satisfies the conditions of the Mean Value Theorem.
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for some number ∗ the interval (−1 ), for  = 1  . It follows that

∆ = ()− (−1) =  0(∗)∆
We now replace ∆ by  0(∗)∆ in the expression for the approximate

surface area.

The result is

 ≈
X

=1

(() + (−1))
q
(∆)2 + (∆)

2

=

X
=1

(() + (−1))
r
(∆)2

³
1 +

¡
 0(∗)

¢2´
=

X
=1

(() + (−1))
r³

1 +
¡
 0(∗)

¢2´
(∆) 

When ∆ is small, we have −1 ≈  ≈ ∗, and by the continuity of  ,
it follows that () ≈ (−1) ≈ (∗), for  = 1  . These observations
allow us to write

 ≈
X

=1

((∗) + (∗))
r³

1 +
¡
 0(∗)

¢2´
(∆)

=

X
=1

2(∗)
r³

1 +
¡
 0(∗)

¢2´
(∆)

This approximation to , which has the form of a Riemann sum, improves

as the number of subintervals increases and as the length of the subintervals

approaches 0. Specifically, as  → ∞ and as ∆ → 0, we obtain an integral

for the surface area:

 = lim
∆→0

X
=1

2(∗)
r³

1 +
¡
 0(∗)

¢2´
(∆)

=

Z 



2()

r³
1 + ( 0())2

´
 (17.7)

In a similar manner, if the graph of is revolved about the  axis, then is

 =

Z 



2

r³
1 + ( 0())2

´
 (17.8)

In these two formulas for you can regard the products 2() and 2 as the

circumferences of the circles traced by a point on the graph of as it is revolved

about the -axis and the -axis. In one case the radius is  = () and in the
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Fig. 17.8. The surface formed by revolving the graph of () = 3 on the interval

about the axis.

other case the radius is  Moreover, by appropriately adjusting  you can

generalize the formula for surface area to cover any horizontal or vertical axis

of revolution, as indicated in the following definition.

Definition of the area of a surface of revolution

Let  = () have a continuous derivative on the interval [ ] The area of

the surface of revolution formed by revolving the graph of about a horizontal

or vertical axis is

 = 2
R 

()

r³
1 + ( 0())2

´
  is a function of 

where () is the distance between the graph of  and the axis of revolution.

If  = () on the interval [ ] then the surface area is

 = 2
R 

()

r³
1 + (0())2

´
  is a function of 

where () is the distance between the graph of  and the axis of revolution.

Example 17.5 Find the area of the surface formed by revolving the graph of

() = 3 on the interval about the axis, as shown in Figure 17.8
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Solution: The distance between the -axis and the graph of is  is () =

(), and because  0() = 32the surface area is

 = 2

Z 



()

r³
1 + ( 0())2

´


= 2

Z 1

0

3
r³

1 + (32)
2
´


=
2

36

Z 1

0

¡
363

¢p
(1 + 94)

=


18

"¡
1 + 94

¢32
32

#1
0

=


27
(1032 − 1) ≈ 35631

¤

Example 17.6 (Surface area of a sphere) Find the area of the surface of

a sphere of radius .

Solution: Such a sphere can be generated by rotating the semicircle with

equation () =
√
2 − 2 − ≤  ≤  about the -axis. Since

 0() = − √
2 − 2

=
−
()

the area of the sphere is given by

2

Z 

−
()

vuutÃ1 +µ 

()

¶2!


= 4

Z 

0

r³
2() + ()2

´


= 4

Z 

0

√
2 = 4|0 =: 42

¤

Example 17.7 (Surface area of a parabolic dish) Find the surface area

of a parabolic reflector whose shape is obtained by rotating the parabolic arc

 = 2 0 ≤  ≤ 1 about the -axis.
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Solution: In this case, the distance between the graph  of and the -axis

is () =  Using  0() = 2 we can determine that the surface area isZ 



2

r³
1 + ( 0())2

´


= 2

Z 1

0



r³
1 + (2)2

´


=
2

8

Z 1

0

(8)
¡
1 + 42

¢12


=


4

2

3

¡
42 + 1

¢ 3
2 |10

=

µ
5

6

√
5− 1

6

¶


¤

17.3 Gabriel’s Horn and Improper Integrals

The definition of a definite integralZ 



()

requires that the interval [ ] be finite. In this section we will study a proce-

dure for evaluating integrals that do not satisfy this requirement because either

one or both of the limits of integration are infinite. Integrals that possess either

property are improper integrals.

To get an idea of how to evaluate an improper integral, consider the integralZ 

1

1

2
 = −1


|1 = 1−

1



Taking the limit as →∞ producesZ ∞

1

1

2
 = lim

→∞

Z 

1

1

2
 = lim

→∞

µ
1− 1



¶
= 1

This improper integral can be interpreted as the area of the unbounded region

between the graph of () = 12 and the -axis (to the right of  = 1).
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Fig. 17.9. Function () = 1

Definition of improper integrals with infinite integration limits

1. If  is continuous on the interval [∞) thenR∞


() = lim→∞
R 

()

2. If  is continuous on the interval (−∞ ] thenR 
−∞ () = lim→−∞

R 

()

3. If  is continuous on the interval (−∞∞) thenR∞
−∞ () =

R 
−∞ ()+

R∞


()

where  is any real number.

Example 17.8 Here we will calculate the volume of a solid of revolution, even

though the solid "goes out to infinity". Consider the region  under the graph

of  = 1 and above the interval [1;∞) on the -axis (Figure 17.9).When you
revolve  around the -axis, the solid of revolution  that is generated looks

like some sort of long, narrow, trumpet, a "horn", where the mouthpiece has

been stretched out to infinity.Of course, the solid region should be filled in, but

we’ve drawn just the surface in order to make it look more horn-like. We’ll use

disks to calculate the volume of S. Our disks are cross sections perpendicular

to the -axis; the radii are given by () = 1, and so  = (1)2. The
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Fig. 17.10. Gabriel’s Horn (initial part)

total volume is

 =

Z ∞

1

(1)2 = lim
→∞

Z 

1

(1)2

= 

∙
lim
→∞

−1

−1 |

1

¸
=  lim

→∞

µ
1− 1



¶
= 

Now, we wish to show that the surface area of Gabriel’s horn is infinite.

(When we write "surface area" here, we mean the area of the "sides", i.e.,

we are excluding the disk that could fill the flared end of the horn at  = 1.

However, as the surface area is infinite without the disk at  = 1, the surface

area would certainly still be infinite if we included the disk.)

The curve that we are revolving around the x-axis is the graph of () = 1 =

−1 for  ≥ 1 We find

p
1 + ( 0())2 =

p
1 + (−−2)2 =

r
1

4
+ 1

and , the distance from a point on the graph to the -axis, in terms of , is

given by the -coordinate of the graph of  = 1,  = 1

Therefore

surface area =

Z ∞

1

2 · 1


r
1

4
+ 1 = 2 lim

→∞

Z 

1

1



r
1

4
+ 1

An easy substitution will not let us find an anti-derivative of 1


q
1
4
+ 1 How-

ever, note that, for  ≥ 1

1



r
1

4
+ 1 ≥ 1
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Thus (from the properties of definite integrals), if  ≥ 1Z 

1

1



r
1

4
+ 1 ≥

Z 

1

1


 = ln|1 = ln 

As  goes to infinity, so does ln , and this forces the larger quantityZ 

1

1



r
1

4
+ 1

to go to infinity also. We conclude:

surface area of Gabriel’s horn = 2∞ =∞

¤

Remark 17.9 The results of Example 17.8 tell us that Gabriel’s horn has

finite volume, but infinite surface area. These results are sometimes described

as "you can fill Gabriel’s horn, but you can’t paint it". The clever student then

asks "What if you filled the horn with paint? Wouldn’t that paint the surface?".

This seeming contradiction is caused by a lack of precision in claiming that

having infinite surface area means that a surface can’t be painted. What is true

is that having infinite surface area implies that the surface cannot be painted

with a finite amount of paint, if we are required to have a uniformly thick layer

of paint everywhere. However, if it were possible to have arbitrarily thin layers

of paint, then the surface of Gabriel’s horn could be painted.

We’ll try to describe a similar problem, in which it’s hopefully easier to see

what’s going on. Suppose you took a cube that’s 1 foot long on each side, and

you fill it with paint. Then, the volume of paint is finite; it’s 1 ft3. The surface

area of the cube is the combined area of the 6 sides, namely, 6 ft2.

Now, imagine chopping the cube in half by a cut which is parallel to two of the

faces, while simultaneously sealing the two new exposed sides (or, you could

think of inserting dividers into the cube first, then chopping the cube in half).

The total volume of paint in the two half-cubes is still 1 ft3, but now the surface

area has gone up, because we created two new faces; the surface area is now

6 + 2 = 8 ft2.

Now, by making a cut parallel to the original cut, divide (and seal) one of the

two half-cubes from above; the volume of paint remains 1 ft3, but we added two

more faces, for a new surface area of 10 ft2. Imagine continuing this process

indefinitely, each time, taking one of your smallest two pieces, and dividing it

into two pieces by making a cut parallel to all of the other cuts. The volume

of paint is always 1 ft3, but the surface area gets arbitrarily large or, in the
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limit, is infinite. Is there a contradiction here? No, but note that the layer of

paint on the sides of the smaller and smaller pieces can’t be any thicker than

the width of each piece, which is getting arbitrary small (close to zero).
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Basic techniques of integration, part one

"Learning the art of integration requires practice."

18.1 Fitting Integrands to Basic Integration Rules

In this chapter, we first collect in a more systematic way some of the integra-

tion formulas derived before. We then present the two most important general

techniques: integration by substitution and integration by parts. As the tech-

niques for evaluating integrals are developed, you will see that integration is

a more subtle process than differentiation and that it takes practice to learn

which method should be used in a given problem. A major step in solving

any integration problem is recognizing which basic integration rule to use. As

shown in Example 18.1, slight differences in the integrand can lead to very

different solution techniques.

Example 18.1 (A Comparison of Three Similar Integrals) Find each in-

tegral.

a.
R 4

2 + 9
 b.

R 4

2 + 9
 c.

R 42

2 + 9


Solution:

a) Use the Arctangent Rule:

Z
4

2 + 9
 = 4

Z
1

2 + 9
 = 4

Z
1

2 + (3)3


= 4

µ
1

3
arctan



3

¶
+ 

=
4

3
arctan



3
+ 
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b) Here the Arctangent Rule does not apply because the numerator contains

a factor of Consider the Log RuleZ
4

2 + 9
 = 2

Z
2

2 + 9


= 2 ln
¡
2 + 9

¢
+

c) Because the degree of the numerator is equal to the degree of the denomina-

tor, we should first use division to rewrite the improper rational function

as the sum of a polynomial and a proper rational function.Z
42

2 + 9
 =

Z µ
4− 36

2 + 9

¶


= 4

Z
1− 36

Z
1

2 + 9


= 4− 12 arctan 
3
+ 

¤
Sometimes it is difficult to recognize how to calculate the integral. Here is

an example.

Example 18.2 (Tricky, clever example) EvaluateZ
1

1− sin

Solution: Z
1

1− sin =

Z
1

1− sin
1 + sin

1 + sin


=

Z
1 + sin

1− sin2 

=

Z
1 + sin

cos2 


=

Z
1

cos2 
+

Z
sin

cos2 


= tan+
1

cos
+  ¤
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18.2 Calculating Integrals

In this section, we review the basic integration formulas learned in before.

Given a function (),
R
() denotes the general antiderivative of  , also

called the indefinite integral. ThusZ
() =  () + 

where  0() = () and  is a constant. Therefore





Z
() = ()

The definite integral is obtained via the fundamental theorem of calculus by

evaluating the indefinite integral at the two limits and subtracting. Thus:Z 



() =  ()| =  ()−  ()

We recall the following general rules for antiderivatives, which may be de-

duced from the corresponding differentiation rules. To check the sum rule, for

instance, we must see if





∙Z
()+

Z
()

¸
= () + ()

But this is true by the sum rule for derivatives

Sum and Constant Multiple Rules for

AntiderivativesR
[() + ()]  =

R
()+

R
()R

() = 
R
()

The antiderivative rule for powers is given as follows

Power Rule For Antiderivatives

R
 =

⎧⎪⎪⎨⎪⎪⎩
+1

+ 1
+   6= −1

ln ||+   = −1
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Example 18.3 Calculate

a)
R µ

323 +
8



¶
;

b)
R µ3 + 8+ 3



¶
;

c)
R ¡

 + 3
¢


Solution:

a) By the sum and constant multiple rules,Z µ
323 +

8



¶
 = 3

Z
23+ 8

Z
1




By the power rule, this becomes

9

5

5
3 + 8 ln ||+ 

b) Z µ
3 + 8+ 3



¶
 =

Z µ
3


+ 2 + 8

¶
 = 8+ 3 ln ||+ 1

3
3 + 

c) Z ¡
 + 3

¢
 =

+1

 + 1
+

4

4
+ 

¤

Applying the fundamental theorem to the power rule, we obtain the rule for

definite integrals of powers:

integer,  and  must be positive (or zero if   0).

Definite Integral of a Power

R 

 =

+1

+ 1
| =

+1 − +1

+ 1
for  real  6= 1

If  = −2−3−4 ,  and  must have the same sign. If  is not an

integer,  and  must be positive (or zero if   0).

R 


1


 = ln || | = ln ||− ln || = ln 



Again  and  must have the same sign.
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The extra conditions on  and  are imposed because the integrand must be de-

fined and continuous on the domain of integration; otherwise the fundamental

theorem does not apply.

Example 18.4 Evaluate

a)
R 1
0

¡
4 − 3√¢ ;

b)
R 2
1

µ√
+

2



¶
;

c)
4 + 2 + 1

2


Solution:

a)
R 1
0

¡
4 − 3√¢  = 1

5

3
2

³

7
2 − 10

´
|10 = −95 ;

b)
R 2
1

µ√
+

2



¶
 = 2 ln ||+ 2

3

3
2 |21 = 2 ln 2 + 4

3

√
2− 2

3
;

c)
R 1
12

µ
4 + 6 + 1

2

¶
 =

R 1
12

¡
1
2
+ 2 + 4

¢
 = 1

15

¡
36 + 54 − 15¢ |1

12
=

713
480



¤
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In the following box, we recall some general properties satisfied by the def-

inite integral.

Properties of the Definite Integral

1. Inequality rule: If () ≤ () for all  in [ ], thenR 

() ≤ R 


()

2. Sum rule:R 

[() + ()]  =

R 

()+

R 

()

3. Constant multiple rule:R 

() = 

R 

()

4. Endpoint additivity rule:R 

() =

R 

()+

R 

()

5. Wrong-way integrals:R 

() = − R 


()

Example 18.5 Let

() =

⎧⎪⎪⎨⎪⎪⎩
1
2

0 ≤  
1

2


1

2
≤  ≤ 1

Draw a graph of  and evaluate
R 1
0
()

Solution: The graph of  is drawn in Figure 18.1. To evaluate the integral,
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Fig. 18.1. The integral of  on [0 1] is the sum of its integrals on [0 12] and [12 1].

we apply the endpoint additivity rule with  = 0,  =
1

2
, and  = 1.

Z 1

0

() =

Z 12

0

()+

Z 1

12

()

=

Z 12

0

µ
1

2

¶
+

Z 1

12



=
1

2
|120 +

1

2
2|112

=
5

8


¤
Let us recall that the alternative form of the fundamental theorem of calculus

states that if  is continuous, then





Z 



() = ()

Example 18.6 Find





Z 2



p
1 + 23

Solution: Wewrite () =
R 2


√
1 + 23 as (2) where () =

R 


√
1 + 23.

By the fundamental theorem of calculus

 0() = 1 + 23
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by the chain rule

0() =  0(2)

¡
2
¢


= 2

p
26 + 1 

¤
As we developed the calculus of the trigonometric and exponential functions,

we obtained formulas for the antiderivatives of certain of these functions. For

convenience, we summarize those formulas.

Trigonometric Formulas

1
R
cos  = sin  + 2

R
sin  = − cos  + 

3
R
sec2  = tan  +  4

R
csc2  = − cot  + 

Inverse Trigonometric Formulas

1
R √

2 − 2
= arcsin




+  − 1    1  6= 0

2
R −√

2 − 2
= arccos




+  − 1    1  6= 0

3
R 

2 + 2
=
1


arctan




+  −∞   ∞  6= 0

Example 18.7 Evaluate :

a)
R 
0
(4 + 2+ sin)

b)
R 6
0

cos 3

c)
R 12
−12

p
1− 2

Solution:
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a)
R
(4 +2+ sin) = 1

5
5 + 2 − cos+ The fundamental theorem of

calculus givesZ 

0

(4 + 2+ sin) =

µ
1

5
5 + 2 − cos

¶
|0

= 2 +
1

5
5 + 2

≈ 73074

b) An antiderivative of cos 3 is, by guesswork,
sin 3

3
. Thus

Z 6

0

cos 3 =
sin 3

3
|60 =

1

3


c) From the preceding box, we have
R p

1− 2
= arcsin + and so by the

fundamental theorem,Z 12

−12

p
1− 2

= arcsin |12−12 =


6
−
³
−
6

´
=
1

3


¤

The following box summarizes the antidifferentiation formulas obtained for

the Exponential and Logarithmic functions

Exponential and Logarithm

1
R
 =  +

2
R
 =



ln 
+ 

3
R 1

 = ln ||+ 

Example 18.8 Find

a)
R 1
−1 2



b)
R 1
0
(3 + 2

√
) 

c)
R 1
0
22
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Solution:

a)
R
2 =

2

ln 2
+  so Z 1

−1
2 =

2

ln 2
|1−1 =

3

2 ln 2


b)
R
(3 + 2

√
)  = 3 + 4

3

3
2 + and so by the fundamental theorem,Z 1

0

¡
3 + 2

√

¢
 =

µ
3 +

4

3

3
2

¶
|10

= 3− 5
3

≈ 6 4882

c)
R
22 = 1

2

22

ln 2
 therefore Z 1

0

22 =
1

2

22

ln 2
|10

=
3

2 ln 2

¤

Example 18.9

a) Differentiate  ln

b) Find
R
ln

c) Find
R 5
2
ln

Solution:

a)



( ln) = ln+ 1

b) From )
R
(ln+ 1)  =  ln+  Hence,Z

ln =  ln− + 

c)
R 5
2
ln = ( ln− ) |52 = 5 ln 5− 2 ln 2− 3

¤



18.3 Integration by Substitution 419

18.3 Integration by Substitution

The method of integration by substitution is based on the chain rule for

differentiation. If  and  are differentiable functions, the chain rule tells

us that ( (())0 =  0(())0(); that is,  (()) is an antiderivative of
 0(())0(). In indefinite integral notation, we haveZ

 0(())0() = ( (()) +  (18.1)

As in differentiation, it is convenient to introduce an intermediate variable

 = (); then the preceding formula becomesZ
 0()




 =  () +  (18.2)

If we write () for  0(), so that
R
() =  ()+, we obtain, the formulaZ

()



 =

Z
() (18.3)

This formula is easy to remember, since one may "cancel the ’s."

To apply the method of substitution one must find in a given integrand

an expression  = () whose derivative  = 0() also occurs in the
integrand.

Example 18.10 Find
R
2
√
2 + 1 and check the answer by differentia-

tion,

Solution: None of the rules in previous section apply to this integral, so

we try integration by substitution. Noticing that 2, the derivative of 2 + 1,

occurs in the integrand, we are led to write  = 2 + 1; then we haveZ
2
p
2 + 1 =

Z p
2 + 12 =

Z √






By formula (18.3), the last integral equalsZ √
 =

2

3

3
2 +

At this point we substitute 2 + 1 for , which givesZ
2
p
2 + 1 =

2

3

¡
2 + 1

¢ 3
2 +



420 18. Basic techniques of integration, part one

Checking our answer by differentiating has educational as well as insurance

value, since it will show how the chain rule produces the integrand we started

with:





µ
2

3

¡
2 + 1

¢ 3
2 + 

¶
=
2

3

3

2

¡
2 + 1

¢ 1
2




¡
2 + 1

¢
= 2

p
2 + 1

as it should be. ¤
Sometimes the derivative of the intermediate variable is "hidden" in the

integrand. If we are clever, however, we can still use the method of substitution,

as the next example shows.

Example 18.11 Find
R
cos2  sin

Solution: We are tempted to make the substitution  = cos, but 

is then − sin rather than sin. No matter-we can rewrite the integral asZ ¡− cos2 ¢ (− sin) 
Setting  = cos we haveZ

−2


 =

Z
−2 = −1

3
3 +

so Z
cos2  sin = −1

3
cos3 +

You may check this by differentiating. ¤

Example 18.12 Find
R 

1 + 2
 .

Solution: We cannot just let  = 1+ 2, because  = 22 6= ; but

we may recognize that 2 = ()2 and remember that the derivative of  is

.

Making the substitution  =  and  = , we haveZ


1 + 2
 =

Z


1 + ()2


=

Z
1

1 + 2



·  =

Z
1

1 + 2


= arctan+  = arctan () +

Again you should check this by differentiation ¤
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We may summarize the method of substitution as developed so far:

Integration by Substitution

To integrate a function which involves an intermediate variable  and its

derivative , write the integrand in the form ()(), incorpo-

rating constant factors as required in (). Then apply the formulaZ
()




 =

Z
()

Finally, evaluate
R
() if you can; then substitute for  its expression

in terms of .

Example 18.13 Find

a)
R
2 sin(3)

b)
R
sin 2

Solution:

a) We observe that the factor 2 is, apart from a factor of 3, the derivative of

3. Substitute  = 3 so



= 32 and 2 =

1

3




 ThusZ

2 sin(3) =

Z
1

3




sin() =

1

3

Z
sin()






=
1

3

Z
sin() = −1

3
cos+ 

Hence Z
2 sin(3) = −1

3
cos
¡
3
¢
+ 

b) Substitute  = 2 so  = 2 ThenZ
sin 2 =

1

2

Z
(sin 2) 2 =

1

2

Z
(sin)






=
1

2

Z
(sin)  = −1

2
cos+ 

Thus Z
sin 2 = −1

2
cos 2+ 

¤
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Example 18.14 Evaluate:

a)
R 2

3 + 5


b)
R 1

2 − 6+ 10 (HINT: Complete the square in the denominator)

c)
R
sin2 2 cos 2

d)
R 1√−7− 8− 2

 (HINT: Complete the square)

Solution:

a) Set  = 3 + 5;  = 32. ThenZ
2

3 (3 + 5)
32 =

1

3

Z
1








=
1

3

Z
1


 =

1

3
ln ||+ 

=
1

3
ln
¯̄
3 + 5

¯̄
+ 

b) Completing the square, we find

2 − 6+ 10 = (2 − 6+ 9)− 9 + 10
= (− 3)2 + 1

We set  = − 3;  = 1. ThenZ
1

2 − 6+ 10 =

Z
1

1 + (− 3)2 =
Z

1

1 + ()2





=

Z
1

1 + ()2
 = arctan+ 

so Z
1

2 − 6+ 10 = arctan (− 3) +

c) We first substitute  = 2. Since  = 2,Z
sin2 2 cos 2 =

Z
sin2  cos

1

2






=
1

2

Z
sin2  cos
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At this point, we notice that another substitution is appropriate: we set

 = sin and  = cos. Then

1

2

Z
sin2  cos =

1

2

Z
2



 =

1

2

Z
2

=
1

2
· 1
3
3 +  =

1

6
3 +

Now we must put our answer in terms of . Since  = sin and  = 2,

we have Z
sin2 2 cos 2 =

sin3 2

6
+ 

You should check this formula by differentiating.

d) Z
1√−7− 8− 2

 =

Z
1q

9− (+ 4)2


We set  = + 4;  = 1. ThenZ
1q

(3)2 − 2
 = arcsin

1

3
+ 

Now we must put our answer in terms of , replacing  by (+ 4)Z
1√−7− 8− 2

 = arcsin
1

3
(+ 4) + 

¤
You may have noticed that we could have done this problem in one step

by substituting  = sin 2 in the beginning. We did the problem the long

way to show that you can solve an integration problem even if you do not see

everything at once. ¤
Two simple substitutions are so useful that they are worth noting explicitly.

We have already used them in the preceding examples. The first is the shifting

rule, obtained by the substitution  =  + , where a is a constant. Here

 = 1.

Shifting Rule

To evaluate
R
(+ ) first evaluate

R
() then substitute

+  for R
(+ ) =  (+ ) +  where  () =

R
()
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The second rule is the scaling rule, obtained by substituting  = , where 

is a constant. Here  = . The substitution corresponds to a change of

scale on the  axis.

Scaling Rule

To evaluate
R
() evaluate

R
() divide by , then substitute

 for R
() =

1


 () +  where  () =

R
()

Example 18.15 Find

a)
R
sec2(+ 7)

b)
R
cos(10)

Solution:

a) Since
R
sec2  = tan+  the shifting rule givesZ

sec2(+ 7) = tan(+ 7) + 

b) Since
R
cos = sin+  the scaling rule givesZ

cos(10) =
1

10
sin(10) +

¤

You do not need to memorize the shifting and scaling rules as such; however,

the underlying substitutions are so common that you should learn to use them

rapidly and accurately.

To conclude this section, we shall introduce a useful device called differential

notation, which makes the substitution process more mechanical. In particular,

this notation helps keep track of the constant factors which must be distributed

between the () and  parts of the integrand. We illustrate the device

with an example before explaining why it works.

Example 18.16 Find
R 4 + 2

(5 + 10)
5
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Solution: We wish to substitute  = 5+10; note that  = 54+10.

Pretending that  is a fraction, we may "solve for ," writing  =

(54 + 10). Now we substitute  for 5 + 10 and (54 + 10) for  in

our integral to obtainZ
4 + 2

(5 + 10)
5
 =

Z
4 + 2

5
· 

54 + 10
=

Z
4 + 2

5 (4 + 2)



5
=

Z
1

5



5


Notice that the (4 +2) is cancelled, leaving us an integral in  which we can

evaluate:
1

5

Z


5
=
1

5

µ
− 1

44

¶
+  = − 1

204
+ 

Substituting 5 + 10 for  givesZ
4 + 2

(5 + 10)
5
 = − 1

20 (5 + 10)
4
+

¤
Although  is not really a fraction, we can still justify "solving for "

when we integrate by substitution. Suppose that we are trying to integrateR
() by substituting  = (). Solving  = 0() for  amounts to

replacing  by 0() and hence writingZ
() =

Z
()

0()
 (18.4)

Now suppose that we can express
()

0() in terms of , i.e.,
()

0() = () for some

function  . Then we are saying that () = ()0() = (())0(), and
equation (18.4) just saysZ

(())0() =
Z

()

which is the form of integration by substitution we have been using all along.

Example 18.17 Find
R Ã1

2

!


Solution 18.18 Let  = 1;  = −12 and  = −2 soZ µ
1

2

¶
1 =

Z µ
1

2

¶

¡−2¢ = −Z  = − + 
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and therefore Z µ
1

2

¶
1 = −1 + 

¤

Integration by Substitution

(Differential Notation)

To integrate
R
() by substitution:

1 Choose a new variable  = ()

2 Differentiate to get  = 0() and then solve for .
3 Replace  in the integral by the expression found in step 2.

4 Try to express the new integrand completely in terms of , eliminating

. (If you cannot, try another substitution or another method.)

5 Evaluate the new integral
R
() (if you can).

6 Express the result in terms of .

7 Check by differentiating

Example 18.19 Calculate the following integrals

a)
R 2 + 2

3
√
3 + 32 + 1



b)
R
cos[cos(sin)]

c)
R µ√1 + ln



¶


Solution:

a) Let  = 3 + 32 + 1;  = 32 + 6 so  = (32 + 6) andZ
2 + 2

3
√
3 + 32 + 1

 =

Z
1
3
√


2 + 2

32 + 6


=
1

3

Z
1
3
√

 =

1

3
· 3
2
23 + 

Thus Z
2 + 2

3
√
3 + 32 + 1

 =
1

2

¡
3 + 32 + 1

¢23
+
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b) Let  = sin;  = cos  =  cos, soZ
cos[cos(sin)] =

Z
cos[cos(sin)]



cos

=

Z
cos = sin+ 

and therefore Z
cos[cos(sin)] = sin(sin) +

c) Let  = 1 + ln;  = 1  =  soZ µ√
1 + ln



¶
 =

Z µ√
1 + ln



¶
() =

Z
12 =

2

3
32 + 

and therefore Z µ√
1 + ln



¶
 =

2

3
(1 + ln)32 + 

¤

18.4 Changing Variables in the Definite Integral

We have just learned how to evaluate many indefinite integrals by the method

of substitution. Using the fundamental theorem of calculus, we can use this

knowledge to evaluate definite integrals as well.

Example 18.20 Find
R 2
0

√
+ 3

Solution: Substitute  = + 3,  = . ThenZ √
+ 3 =

Z √
 =

2

3
32 +  =

2

3
(+ 3)32 +

By the fundamental theorem of calculus,Z 2

0

√
+ 3 =

2

3
(+ 3)32 |20 =

10

3

√
5− 2

√
3 ≈: 3 9895

¤
Notice that we must express the indefinite integral in terms of  before

plugging in the endpoints 0 and 2, since they refer to values of . It is possible,

however, to evaluate the definite integral directly in the  variable-provided

that we change the endpoints. We offer an example before stating the general

procedure.
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Example 18.21 Find
R 4
1



1 + 4


Solution: Substitute  = 2,  = 2, that is,  = 2. As  runs

from 1 to 4,  = 2 runs from 1 to 16, so we have

Z 4

1



1 + 4
 =

1

2

Z 16

1

1

1 + 2
 =

1

2
arctan 16− 1

8
 ≈ 036149

¤
In general, suppose that we have an integral of the form

R
(())0().

If  0() = (), then  (()) is an antiderivative of (())0(); by the
fundamental theorem of calculus, we have

Z 



(())0() =  (())−  (())

However, the right-hand side is equal to

Z ()

()

()

so we have the formula

Z 



(())0() =
Z ()

()

() (18.5)

Example 18.22 Evaluate
R 4
0

cos(2)

Solution: Let  = 2 ,  = 1
2
 ;  = 0 when  = 0,  = 2 when

 = 4 Thus

Z 4

0

cos(2) =
1

2

Z 2

0

cos =
1

2
sin |20 =

1

2
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¤

Definite Integral by Substitution

Given an integral
R 

() and a new variable  = ()

1 Substitute 0() for  and then try to express the integrand
()0() in terms of 

2 Change the endpoints  and  to () and (), the corresponding

values of 

Then R 

() =

R ()
()

()

where () = ()(). Since () = (())0(), this can be
written as R 


(())0() =

R ()
()

()

Example 18.23 Evaluate
R 5
1



4 + 102 + 25


Solution: Seeing that the denominator can be written in terms of 2, we

try  = 2,  = (2);  = 1 when  = 1 and  = 25 when  = 5. Thus

Z 5

1



4 + 102 + 25
 =

1

2

Z 25

1



2 + 10+ 25


Now we notice that the denominator is (+5)2, so we set  = +5,  = ;

 = 6 when  = 1,  = 30 when  = 25. Therefore

1

2

Z 25

1



2 + 10+ 25
=

1

2

Z 30

6



2
=
1

2

µ
−1


¶
|306

= − 1
60
+
1

12
=
1

15


If you see the substitution  = 2 + 5 right away, you can do the problem in

one step instead of two. ¤

Example 18.24 Evaluate
R 4
0

¡
cos2  − sin2 ¢ 

Solution: It is not obvious what substitution is appropriate here, so a

little trial and error is called for. If we remember the trigonometric identity
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cos 2 = cos2  − sin2  we can proceed easily:Z 4

0

¡
cos2  − sin2 ¢  =

Z 4

0

cos 2

=

Z 2

0

cos


2

=
sin

2
|20

=
1

2


¤

Example 18.25 Evaluate Z 1

0



1 + 


Solution: Let  = 1 + ;  = ,  = ;  = 1 + 0 = 2 when

 = 0 and  = 1 +  when  = 1. ThusZ 1

0



1 + 
 =

Z 1+

2

1


 = ln|1+2 = ln

µ
1 + 

2

¶
¤

Remark 18.26 Substitution does not always work. We can always make a

substitution, but sometimes it leads nowhere.

18.5 Integration by Parts

"Integrating the product rule leads to the method of integration by parts."

The second of the two important new methods of integration is developed

in this section. The method parallels that of substitution, with the chain rule

replaced by the product rule.

The product rule for derivatives asserts that

()0() =  0()() +  ()0()

Since  ()() is an antiderivative for  0()() +  ()0(), we can writeZ £
 0()() +  ()0()

¤
 =  ()() + 
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Applying the sum rule and transposing one term leads to the formulaZ
 ()0() =  ()()−

Z
 0()()+ 

If the integral on the right-hand side can be evaluated, it will have its own

constant , so it need not be repeated. We thus write

R
 ()0() =  ()()− R  0()() (18.6)

which is the formula for integration by parts. To apply formula (18.6) we

need to break up a given integrand as a product  ()0(), write down the
right-hand side of formula (18.6), and hope that we can integrate  0()().
Integrands involving trigonometric, logarithmic, and exponential functions are

often good candidates for integration by parts, but practice is necessary to

learn the best way to break up an integrand as a product.

Example 18.27 Evaluate
R
 sin =

Solution: If we remember that sin is the derivative of − cos, we can
write  sin as ()0(), where  () =  and () = − cos. Applying
formula (18.6), we haveZ

 sin =  · (− cos)−
Z
1 · (− cos) 

= − cos+ sin+ 

Checking by differentiation, we have




(− cos+ sin+ ) =  sin

as required. ¤
It is often convenient to write formula (18.6) using differential notation. Here

we write =  () and  = (). Then  =  0() and  = 0().
Treating the derivatives as if they were quotients of "differentials" , , and

, we have  =  0() and  = 0(). Substituting these into formula
(18.6) gives Z

 =  −
Z

 (18.7)

(see Figure 18.2.)
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Fig. 18.2. You can move  from  to  if you switch the sign and add 

When you use integration by parts, to integrate a function  write () as a

product  ()0() = ; the factor 0() is a function whose antideriv-
ative  = () can be found. With a good choice of  =  () and  = (),

the integral
R
 0()() =

R
 becomes simpler than the original prob-

lem
R
. The ability to make good choices of  and  comes with practice.

A last reminder- don’t forget the minus sign.
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Integration by Parts

To evaluate
R
() by parts:

1 Write () as a product  ()0(), where the antiderivative
() of 0() is known.

2 Take the derivative  0() of  ().

3 Use the formulaR
 ()0() =  ()()− R  0()()

i.e., with  =  () and  = (),R
 =  − R 

Example 18.28 Find

a)
R
 sin

b)
R
2 sin

Solution:

a) Let  () =  and 0() = sin. Integrating 0() gives () = − cos;
also,  0() = 1, soZ

 sin = − cos−
Z
− cos

= − cos− (− sin) + 

= sin−  cos+ 

b) (Using formula 18.7) Let  = 2,  = sin. To apply formula (18.7)

for integration by parts, we need to know . But  =
R
 =

R
sin =

− cos. (We leave out the arbitrary constant here and will put it in at
the end of the problem.)
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Now Z
2 sin =  −

Z


= −2 cos−
Z
(− cos) · 2

= −2 cos+ 2
Z

 cos

Using the same method again, we can find thatZ
 cos = cos+  sin+ 

Hence Z
2 sin = −2 cos+ 2 (cos+  sin+)

= 2 cos− 2 cos+ 2 sin+ 

Check this result by differentiating-it is nice to see all the cancellation. ¤

Integration by parts is also commonly used in integrals involving  and

ln.

Example 18.29 Find

a)
R
ln (using integration by parts)

b)
R


Solution:

a) Here, let  = ln,  = 1. Then  =  and  =
R
1 = . Applying

the formula for integration by parts, we haveZ
ln =  −

Z
 = (ln)−

Z





=  ln−
Z
1 =  ln−−+ 

b) Let  =  and  = , so  = . Thus, using integration by parts,Z
 =

Z
 =  −

Z


=  −
Z



=  −  + 

¤
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Next we consider an example involving both  and sin.

Example 18.30 Apply integration by parts twice to find
R
 sin

Solution: Let  = sin and  = , so  =  andZ
 sin =  sin−

Z
 cos (18.8)

Repeating the integration by parts,Z
 cos =  cos+

Z
 sin (18.9)

where, this time,  = cos and  = . Substituting formula (18.9) into (18.8),

we get Z
 sin =  sin−

µ
 cos+

Z
 sin

¶


The unknown integral
R
 sin appears twice in this equation. Writing ""

for this integral, we have

 =  sin−  cos− 

and solving for  gives

 =
1

2
( sin−  cos) + 

=


2
(sin− cos) + 

¤
Using integration by parts and then the fundamental theorem of calculus,

we can calculate definite integrals

Example 18.31 Find
R 2
−2  sin

Solution: From Example 18.27 we have
R
 sin = − cos+sin+,

so Z 2

−2
 sin = (− cos+ sin) |2−2

= (0 + 1)− [0 + (−1)]
= 2

¤
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Example 18.32 Find

a)
R ln 2
0

 ln( + 1)

b)
R 
1
sin(ln)

Solution:

a) Notice that  is the derivative of (+1), so we first make the substitution

 =  + 1 Then Z ln 2

0

 ln( + 1) =

Z 3

2

ln 

and, from Example 18.29
R
ln  =  ln − + . ThereforeZ ln 2

0

 ln( + 1) = ( ln − ) |32
= 3 ln 3− 2 ln 2− 1 ≈: 090954

b)

Again we begin with a substitution. Let  = ln, so that  =  and

 = (1). Then
R
sin(ln) =

R
(sin), which was evaluated in

Example 18.30 . HenceZ 

1

sin(ln) =

Z 1

0

sin

=  (sin− cos) |10
= 1−  (cos 1− sin 1)

¤
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Basic techniques of integration, part two

19.1 Trigonometric Integrals

Besides the basic methods of integration associated with reversing the differ-

entiation rules, there are special methods for integrands of particular forms.

Using these methods, we can solve some interesting length and area problems.

fundamental identities: sin2 + cos2  = 1; tan2 + 1 = sec2 

half angle formulas: sin2  =
1− cos 2

2
; cos2  =

1 + cos 2

2

The integrals treated in this section fall into two groups. First, there are

some purely trigonometric integrals that can be evaluated using trigonometric

identities. Second, there are integrals involving quadratic functions and their

square roots which can be evaluated using trigonometric substitutions.

We begin by considering integrals of the formZ
sin  cos 

where  and  are integers. The case  = 1 is easy, for if we let  = sin, we

find Z
sin  cos =

Z
 =

+1

+ 1
+  =

sin+1()

+ 1
+

(or ln |sin|+ , if  = −1) The case  = 1 is similarZ
sin cos  = −cos

+1 ()

+ 1
+ 

(or -ln |cos|+, if  = −1) If either  or  is odd, we can use the identity

sin2 + cos2  = 1 to reduce the integral to one of the types just treated.

Example 19.1 Evaluate Z
sin2  cos3 
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Solution:
R
sin2  cos2  cos =

R
sin2 

¡
1− sin2 ¢ cos which can

be integrated by the substitution  = sin. We get

Z
2(1− 2) =

1

3
3 − 1

5
5 +  =

1

3
sin3 − 1

5
sin5 +  ¤

If  = 2 and  = 21 are both even, we can use the half-angle formulas

sin2  = (1− cos 2)2 and cos2  = (1 + cos 2)2 to write

Z
sin2  cos2  =

Z µ
1− cos 2

2

¶ µ
1 + cos 2

2

¶



=
1

2

Z µ
1− cos 

2

¶ µ
1 + cos 

2

¶



where  = 2 Multiplying this out, we are faced with a sum of integrals of

the form
R
cos , with  ranging from zero to + . The integrals for odd

 can be handled by the previous method; to those with even  we apply

the half-angle formula once again. The whole process is repeated as often as

necessary until everything is integrated.

Example 19.2 Evaluate
R
sin2  cos2 

Solution:

Z
sin2  cos2  =

Z µ
1− cos 2

2

¶µ
1 + cos 2

2

¶


=
1

4

Z
(1− cos2 2)

=


4
− 1
4

Z
cos2 2

=


4
− 1
4

Z
1 + cos 4

2


=


4
− 

8
− 1
8

Z
cos 4

=


8
− sin 4

32
+  ¤
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Trigonometric Integrals

To evaluate
R
sin  cos  :

1 If  is odd, write  = 2 + 1, andR
sin  cos  =

R
sin2  cos  sin

=
R ¡
1− cos2 ¢ cos  sin

Now integrate by substituting  = cos.

2 If  is odd, write  = 2 + 1, andR
sin  cos  =

R
sin  cos2  cos

=
R
sin 

¡
1− sin2 ¢  cos

Now integrate by substituting  = sin.

3 ) If  and  are even, write  = 2 and  = 2 and

R
sin2  cos2  =

R µ1− cos 2
2

¶ µ
1 + cos 2

2

¶



Substitute  = 2. Expand and apply step 2 to the odd powers of

cos 

) Apply step 3() to the even powers of cos  and continue until

the integration is completed.

Example 19.3 Evaluate the integral

Z
sin3  cos2 
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Solution:Z
sin3  cos2  =

Z
sin2  cos2  sin

=

Z ¡
1− cos2 ¢ cos2  sin

=

Z ¡
cos2 − cos4 ¢ sin

=

Z ¡
cos4 − cos2 ¢ (− sin) 

=
cos5 

5
− cos

3 

3
+  ¤

Example 19.4 Evaluate the integral
R cos3 
sin



Solution: Z
cos3 

sin
 =

Z
cos2 

sin
cos

=

Z
1− sin2 
sin

cos

=

Z
1− 2




=

Z µ
1


− 

¶


= ln ||− 1
2
2 + 

= ln | sin|− 1
2
sin2 +  ¤

Certain other integration problems yield to the use of the addition formulas:

sin(+ ) = sin cos  + cos sin ,

cos(+ ) = cos cos  − sin sin 
and the product formulas:

sin cos  = 1
2
[sin(− ) + sin(+ )]

sin sin  = 1
2
[cos(− )− cos(+ )]

cos cos  = 1
2
[cos(− ) + cos(+ )]
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Example 19.5 Evaluate

a)
R
sin cos 2

b)
R
cos 3 cos 5.

Solution:

a)
R
sin cos 2 = 1

2

R
(sin 3− sin)  = 1

2
cos− 1

6
cos 3+

b)
R
cos 3 cos 5 = 1

2

R
(cos 8− cos 2)  = 1

4
sin 2+ 1

16
sin 8+

¤

Example 19.6 Evaluate
R
sin (5) sin (2) 

Solution:Z
sin (5) sin (2)  =

1

2

Z
(cos(3)− cos(7)) 

=
1

2

µ
1

3
sin(3)− 1

7
sin(7)

¶
+ 

=
1

42
(7 sin(3)− 3 sin(7)) +  ¤

Example 19.7 Evaluate
R
sin  cos  where  and  are constants.

Solution:Z
sin  cos  =

1

2

Z
[cos(− )− cos(+ )] 

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2

sin(− )

− 
if  6= ±



2
− 1

4
sin 2+  if  = 

1

4
sin 2− 

2
+  if  = −

¤
Many integrals containing factors of the form

√
2 ± 2,

√
2 − 2 , or 2+2

can be evaluated or simplified by means of trigonometric substitutions. In

order to remember what to substitute, it is useful to draw the appropriate

right-angle triangle, as in the following box. From this right triangle we can

easily read off all of the six trigonometric functions of  in terms of 
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Trigonometric Substitutions

1 If
√
2 − 2 occurs, try  =  sin ; then  =  cos  and√

2 − 2 =  cos ; (  0 and  is an acute angle).

2 If
√
2 − 2 occurs, try  =  sec ; then  =  tan  sec  and√

2 − 2 =  tan 

3 If
√
2 + 2 or 2 + 2 occurs, try  =  tan ; then  =  sec2 

and
√
2 + 2 =  sec 

Example 19.8 (A Sine Substitution) Evaluate the inyegral
R 

2
√
9− 2
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Solution: We begin by making the substitution  = 3 sin  . Then, we have

2 = 92 and  = cos p
9− 2 =

p
9− 9 sin2  = 3

p
1− sin2  = 3

√
cos2  = 3cos 

Next, go from the variable  to the variable  , as follows.Z


2
√
9− 2

=

Z
3 cos 

(92) (3 cos )

=
1

9

Z
1

2
 = −1

9
cot  + 

Finally, return to the original variable  = −1
9
cot  = −1

9

√
9− 2


+  that

is Z


2
√
9− 2

= −1
9

√
9− 2


+

You can summarize this substitution by the following useful right triangle.

¤

Example 19.9 (A Tangent Substitution) Evaluate the integralZ


(2 + 1)32


Solution: We begin with the substitution  =  tan  = tan  . Then, we

have

 = sec2  2 + 1 = tan2  + 1 = sec2  (2 + 1)32 = sec3 
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Moving to the new variable,Z


(2 + 1)32
=

Z
sec2 

sec3 
=

Z


sec 
=

Z
cos  = sin  + 

Converting back to the original variable,

sin  +  =
√

2 + 1
+ 

In other words, Z


(2 + 1)32
=

√
2 + 1

+ 

¤

Example 19.10 (A secant Substitution) Evaluate the integral
R √

2 − 25 

Solution: We begin with the substitution  = 5 sec  . Then, we have

 = 5 sec  tan 
p
2 − 25 =

p
sec2  − 25 = 5

p
sec2  − 1 = 5 tan 

With this substitution, we haveZ
√

2 − 25 =

Z
5 sec  tan 

5 tan 
=

Z
sec 

= ln |sec  + tan |+  = ln

¯̄̄̄
¯5 +

√
2 − 25
5

¯̄̄̄
¯+ 
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¤

19.2 Even Powers by Parts

Example 19.11 Integrating by parts we have

Z
sin2  = − sin cos+

Z
cos2 

where

 = sin  = sin

 = cos  = − cos

So Z
sin2  = − sin cos+

Z
cos2 

= − sin cos+
Z ¡

1− sin2¢
= − sin cos+ −

Z
sin2 

Now, the same integral appears on the both equality sizes, hence

Z
sin2  =

1

2
(− sin cos+ ) +  ¤
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In a similar way we can obtain the following Reduction Formulas:

Reduction Formulas

R
cos  =

1


cos−1  sin+

− 1


R
cos−2 

R
sin  = − 1


sin−1  cos+

− 1


R
sin−2 

Example 19.12 Evaluate
R
cos4  sin2 

Solution: Using identity

sin2  = 1− cos2 
we have Z

cos4  sin2  ==

Z
cos4 −

Z
cos6 

Next, from the reduction formulaZ
cos  =

1


cos−1  sin+

− 1


Z
cos−2 

(applied for  = 6 4, and 2) we have:Z
cos4  sin2 

=

Z
cos4 −

Z
cos6 

=

Z
cos4 − 1

6
cos5  sin− 5

6

Z
cos4 

=
1

6

µ
− cos5  sin+

Z
cos4 

¶
=

1

6

µ
− cos5  sin+ cos3  sin+ 3

4

Z
cos2 

¶
=

1

6

µ
− cos5  sin+ cos3  sin+ 3

4

µ
1

2
cos sin+

1

2


¶¶
+ 

=
1

16
+

3

64
sin 2− 1

192
sin 6+  ¤

Example 19.13 Let  be the region bounded by the graph of () = sin2()

and the -axis for 0 ≤  ≤  (see Figure 19.1 and 19.2) Find the volume of

the solid that is generated by revolving  about the -axis.
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Fig. 19.1. The graph of the function () = sin2()

Fig. 19.2. A solid of revolution from Example 19.13
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Fig. 19.3. The graph of the function () = sin2  cos2 

Solution: The volume  of the solid of revolution is:

 =

Z 

0


¡
sin2 

¢2


=

Z 

0



µ
1− cos 2

2

¶2


=

Z 

0



4

¡
1− 2 cos 2+ cos2 2¢ 

=


4

Z 

0

µ
1− 2 cos 2+ 1 + cos 4

2

¶


=


4

Z 

0

µ
1

2
cos 4− 2 cos 2+ 3

2

¶


=
1

4


µ
3

2
− sin 2+ 1

8
sin 4

¶
|0

=
3

8
2 ¤

Example 19.14 Example 19.15 Find the average value of () = sin2  cos2 

on the interval [0 2] (see Figure 19.3).

Solution: By definition, the average value is the integral divided by the

length of the interval:
1

2

Z 2

0

sin2  cos2 

By Example 19.1 Z
sin2  cos2  =

1

3
sin3 − 1

5
sin5 +
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Thus Z 2

0

sin2  cos2  =

µ
1

3
sin3 − 1

5
sin5 

¶
|20 =



4

so the average value is
1

2
· 
4
=
1

8
¤

19.3 Completing the square

Completing the square can be useful in simplifying integrals involving the

expression 2 + + . The following two examples illustrate the method.

Example 19.16 Evaluate
R √

10 + 4− 2


Solution: To complete the square, write 10 + 4 − 2 = −( + )2 + ;

solving for  and , we find  = −2 and  = 14, so 10+4−2 = −(−2)2+14.
Hence Z

√
10 + 4− 2

=

Z
p

14− (− 2)2 =
Z

√
14− 2

where  = − 2 This integral is

arcsin

µ
√
14

¶
+ 

so our final answer is

arcsin

µ
− 2√
14

¶
+  ¤

Completing the square

If an integral involves 2 + + , complete the square and then use a

trigonometric substitution or some other method to evaluate the integral.

Example 19.17 Evaluate

a)
R 

2 + + 1


b)
R √

2 + + 1
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Solution:

a) Z


2 + + 1
=

Z
µ

+
1

2

¶2
+
3

4

=

Z


2 +
3

4

( = +
1

2
)

=
1p
34

arctan

Ã
p
34

!
+ 

=
2√
3
arctan

µ
2+ 1√

3

¶
+ 

b) Z
√

2 + + 1
=

Z
p

2 + 34
( = +

1

2
)

= ln
¯̄̄
+

p
2 + 34

¯̄̄
+ 

= ln

¯̄̄̄
¯̄+ 12 +

sµ
+

1

2

¶2
+ 34

¯̄̄̄
¯̄+ 

= ln

¯̄̄̄
¯̄+ 12 +

sµ
+

1

2

¶2
+ 34

¯̄̄̄
¯̄+ 

= ln

¯̄̄̄
+

1

2
+
p
2 + + 1

¯̄̄̄
+  ¤

19.4 Partial Fractions

By the method of partial fractions, one can evaluate any integral of the formR  ()

()
 where  and  are polynomials.

The integral of a polynomial can be expressed simply by the formulaZ ¡


 + −1−1 + + 1+ 0
¢


=


+1

+ 1
+

−1


+ +

1
2

2
+ 0+ 
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but there is no simple general formula for integrals of quotients of polynomials,

i.e., for rational functions. There is, however, a general method for integrating

rational functions, which we shall learn in this section. This method demon-

strates clearly the need for evaluating integrals by hand or by a computer

program such as Mathematica ot Maple, which automatically carries out the

procedures to be described in this section, since tables cannot include the

infinitely many possible integrals of this type.

One class of rational functions which we can integrate simply are the recip-

rocal powers. Using the substitution  = + , we find thatZ


(+ )
=

Z





which is evaluated by the power rule. Thus, we get

Z


(+ )
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1

(− 1)(+ )−1
+  if  6= 1

1


ln |+ |+  if  = 1

More generally, we can integrate any rational function whose denominator can

be factored into linear factors. We shall give several examples before presenting

the general method.

Example 19.18 Evaluate Z
+ 1

(− 1) (− 3)

Solution: We shall try to write

+ 1

(− 1) (− 3) =


(− 1) +


(− 3) 

for constants  and . To determine them, note that



(− 1) +


(− 3) =
(+)− 3−

(− 1) (− 3)
Thus, we should choose

+ = 1 and − 3− = 1

Solving system of two linear equations with two unknowns we get,  = −1
and  = 2. Thus,

+ 1

(− 1) (− 3) =
−1

(− 1) +
2

(− 3) 
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so Z
+ 1

(− 1) (− 3) = 2 ln |− 3|− ln |− 1|+ 

= ln

Ã
|− 3|2
|− 1|

!
+ 

¤

Example 19.19 Evaluate

a)
R 42 + 2+ 3

(− 2)2 (+ 3)

b)
R 1
−1

42 + 2+ 3

(− 2)2 (+ 3)

a) As in Example 19.18, we might expect to decompose the quotient in terms

of
1

(− 2) and
1

(+ 3)
 In fact, we shall see that we can write

42 + 2+ 3

(− 2)2 (+ 3) =


(− 2) +


(− 2)2 +


(+ 3)
(19.1)

if we choose the constants , , and  suitably. Adding the terms on

the right-hand side of equation (1) over the common denominator, we

get
 (− 2) (− 3) +(+ 3) + (− 2)2

(− 2)2 (+ 3)

The numerator, when multiplied out, would be a polynomial 2
2+1+0,

where the coefficients 2 1, and a0 depend on , , and . The idea is to

choose , , and  so that we get the numerator 42+2+3 of our integration

problem. (Notice that we have exactly three unknowns , , and  at our

disposal to match the three coefficients in the numerator.)

To choose , , and , it is easiest not to multiply out but simply to write

42 + 2+ 3 =  (− 2) (+ 3) +(+ 3) + (− 2)2 (19.2)

and make judicious substitutions for . For instance,  = −3 gives

 =
33

25
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Next,  = 2 gives

 =
23

5


To solve for , we may use either of two methods.

Method 1. Let  = 0 in equation (19.2):

3 = −6+ 3 + 4
3 = −6+ 323

5
+ 4

33

25


 =
67

25


Method 2. Differentiate equation (19.2) to give

8+ 2 = [(− 2) + (+ 3)] + + 2(− 2)

and then substitute  = 2 again:

8 · 2 + 2 =  (2 + 3) +

18 = 5+
23

5

 =
67

25


This gives

42 + 2+ 3

(− 2)2 (+ 3) =
67

25

1

(− 2) +
23

5

1

(− 2)2 +
33

25

1

(+ 3)

(At this point, it is a good idea to check your answer, either by adding

up the right-hand side or by substituting a few values of , using a

calculator.)

We can now integrate:Z
42 + 2+ 3

(− 2)2 (+ 3)

=
67

25

Z


(− 2) +
23

5

Z


(− 2)2 +
33

25

Z


(+ 3)

=
67

25
ln |− 2|− 23

5

1

− 2 +
33

25
ln |+ 3|+

b)
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Since the integrand "blows up" at  = −3 and  = 2, it only makes sense

to evaluate definite integrals over intervals which do not contain these points;

[−1 1] is such an interval. Thus, by (), the definite integral isµ
67

25
ln |− 2|− 23

5

1

− 2 +
33

25
ln |+ 3|

¶
|1−1

=
33

25
ln 4− 67

25
ln 3− 33

25
ln 2 +

46

15
≈ 1 037 3

¤
Not every polynomial can be written as a product of linear factors. For

instance, 2 + 1 cannot be factored further (unless we use complex numbers)

nor can any other quadratic function 2 +  +  for which 2 − 4  0;

but any polynomial can, in principle, be factored into linear and quadratic

factors. (This is proved in more advanced algebra texts.) This factorization is

not always so easy to carry out in practice, but whenever we manage to factor

the denominator of a rational function, we can integrate that function by the

method of partial fractions.

Example 19.20 Integrate
R 1

3 − 1

Solution: The denominator factors as (− 1)(2 + + 1), and 2 + + 1

cannot be further factored (since 2 − 4 = 1− 4 = −3  0). Now write
1

3 − 1 =


− 1 +
+

2 + + 1

Thus

1 = 
¡
2 + + 1

¢
+ (− 1) (+) 

We substitute values for :

 = 1; 1 = 3 so  =
1

3
;

 = 0; 1 =
1

3
− so  = −2

3


Comparing the 2 terms, we get 0 = + so  = −1
3
 Hence

1

3 − 1 =
1

3

µ
1

− 1 −
+ 2

2 + + 1

¶


(This is a good point to check your work.)
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Now Z


− 1 = ln |− 1|+ 

and, writing + 2 =
1

2
(2+ 1) +

3

2
,Z

+ 2

2 + + 1
 =

1

2

Z
2+ 1

2 + + 1
+

3

2

Z


(+ 12)2 + 34

=
1

2
ln
¯̄
2 + + 1

¯̄
+
3

2

r
4

3
arctan

Ã
+ 12p
34

!
+ 

=
1

2
ln
¯̄
2 + + 1

¯̄
+
√
3 arctan

µ
2+ 1√

3

¶
+ 

ThusZ
1

3 − 1 =
1

3
ln |− 1|− 1

6
ln
¯̄
2 + + 1

¯̄
− 1√

3
arctan

µ
2+ 1√

3

¶
+ 

=
1

3

"
1

2
ln

¯̄̄̄
¯ (− 1)22 + + 1

¯̄̄̄
¯
#
−
√
3 arctan

µ
2+ 1√

3

¶
+ 

Observe that the innocuous-looking integrand
1

3 − 1 has brought forth both
logarithmic and trigonometric functions.

Now we are ready to set out a systematic method for the integration of

 ()() by partial fractions. (See the box on p. 456.) A few remarks may

clarify the procedures given in the box. In case the denominator  factors into

 distinct linear factors, which we denote  = (− 1)(− 2)(− ) we

write



=

1

− 1
+

2

− 2
+ +



− 

and determine the  coefficients 1   by multiplying by  and matching

 to the resulting polynomial. The division in step 1 has guaranteed that 

has degree at most  − 1, containing  coefficients. This is consistent with

the number of constants 1  , we have at our disposal. Similarly, if the

denominator has repeated roots, or if there are quadratic factors in the de-

nominator, it can be checked that the number of constants at our disposal is

equal to the number of coefficients in the numerator to be matched. A system

of  equations in  unknowns is likely to have a unique solution, and in this

case, one can prove that it does.
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Partial Fractions

To integrate  ()(), where  and  are polynomials containing

no common factor:

1 If the degree of  is larger than or equal to the degree of , divide 

into  by long division, obtaining a polynomial plus ()(),

where the degree of  is less than that of . Thus we need only

investigate the case where the degree of  is less than that of 

2 Factor the denominator  into linear and quadratic factors-that is,

factors of the form (− ) and 2 + + . (Factor the quadratic

expressions if 2 − 4  0.)

3 If (− ) occurs in the factorization of , write down a sum of the

1

(− )
+

2

(− )2
+ +



(− )


where 1 2   are constants. Do so for each factor of this form

(using constants 1 2  1 2 , and so on) and add the

expressions you get. The constants 1 2  1 2 

will be determined in step 5.

4 If (2 + + ) occurs in the factorization of  with 2 − 4  0,
write down a sum of the form

1+1

2 + + 
+

2+2

(2 + + )
2
+ +

+

(2 + + )


Do so for each factor of this form and add the expressions you get

The constants 1 2  1 2  are determined in step 5. Add

.
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this expression to the one obtained in step 3.

5 Equate the expression obtained in steps 3 and 4 to  ()().

Multiply through by () to obtain an equation between two polyno-

mials. Comparing coefficients of these polynomials, determine equations

for the constants 1 2  , 1 2  1 2 . and solve

these equations. Sometimes the constants can be determined by

substituting convenient values of  in the equality or by differentiation

of the equality.

6 Check your work by adding up the partial fractions or substituting a

few values of .

7 Integrate the expression obtained in step 5 by using

R 

(− )
= −

"
1

( − 1) (− )−1

#
+    1

and R 

(− )
= ln |− |+ 

The terms with a quadratic denominator may be integrated by a

manipulation which makes the derivative of the denominator appear

in the numerator, together with completing the square.

Example 19.21 (Repeated, nonreducible quadratic factor.) CalculateZ
3

(2 + 2+ 2)
2


Solution: It will be easier to compute if we complete the square and write

the integral as Z
3

(2 + 2+ 2)
2
 =

Z
3³

(+ 1)2 + 1
´2

Now we can take a substitution

 = + 1  = 
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and write Z
3³

(+ 1)2 + 1
´2

=

Z
(− 1)3
(2 + 1)

2


Now, let us perform the partial fractions expansion

(− 1)3
(2 + 1)

2
=

3 − 32 + 3− 1
(2 + 1)

2

=
+

(2 + 1)
2
+

+

(2 + 1)

So, we must have

3 − 32 + 3− 1 = (+) +
¡
2 + 1

¢
(+)

and

3 − 32 + 3− 1 = 3 + 2 + (+ )+ +

From that it follows, that

 = 1  = −3   = 2  = 2

hence

(− 1)3
(2 + 1)

2
=

2+ 2

(2 + 1)
2
+

− 3
(2 + 1)



and our integral becomes

Z
(− 1)3
(2 + 1)

2
 =

Z µ
2

(2 + 1)
2
+

2

(2 + 1)
2
+



2 + 1
− 3

2 + 1

¶


= − 1

2 + 1
+

Z
2

(2 + 1)
2
+

1

2
ln
¡
2 + 1

¢− 3 arctan
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Now we have everything except the integral of the second term. Let us compute

that using the trigonometric substitution.Z
2

(2 + 1)
2


=

Z
2 sec2 

sec4 
  = tan   = sec2 

=

Z
2 cos2  =  + sin  cos  +

= arctan+


2 + 1
+ 

Therefore, our original  integral can be presented asZ
(− 1)3
(2 + 1)

2


= − 1

2 + 1
+



2 + 1
+
1

2
ln
¡
2 + 1

¢
+ arctan− 3 arctan+ 

=
− 1
2 + 1

+
1

2
ln
¡
2 + 1

¢− 2 arctan+ 

Now, the only thing to do is replace  with  + 1 So, our original integral

becomes Z
3

(2 + 2+ 2)
2


=


(+ 1)2 + 1
+
1

2
ln
³
(+ 1)2 + 1

´
− 2 arctan (+ 1) +

=


2 + 2+ 2
+
1

2
ln
¡
2 + 2+ 2

¢− 2 arctan ¡2 + 2+ 2¢+ 

¤
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Fig. 19.4. Solid generated by revolving  about the -axis (in Example 19.22).

Example 19.22 Ler  be the region bounded by the graph of () = 1
1+2

and the -axis for 0 ≤  ≤ 1

a) Find the volume of the solid generated by revolving  about the -axis (see

Figure 19.4),

b) Find the volume of the solid generated by revolving  about the -axis (see

Figure 19.5),

Solution:

a) The volume of the solid generated by revolving  about the -axis is

 =

Z 1

0



µ
1

1 + 2

¶2


We will calculate the indefinite integral
R

³

1
1+2

´2
 first and then use it to

evaluate the definite integral.
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Let

 = tan 

 = sec2 

sec  =
p
1 + 2

Then Z


µ
1

1 + 2

¶2
 =

Z

sec2 

sec4 


= 

Z
1

sec2 


=


2

Z
cos2 

=


2

Z
(1 + cos 2) 

=


2

µ
 +

1

2
sin 2

¶
+ 

=


2
( + sin  cos ) +

=


2

µ
arctan+

√
1 + 2

1√
1 + 2

¶
+ 

=


2

µ
arctan+



1 + 2

¶
+

Now

 =

Z 1

0



µ
1

1 + 2

¶2


=

∙


2

µ
arctan+



1 + 2

¶¸1
0

=
1

2


µ
1

4
 +

1

2

¶


b) The volume of the solid generated by revolving  about the -axis is

 =

Z 1

0

2

µ
1

1 + 2

¶
 = 2

Z 1

0



1 + 2


= 

Z 2

1

1


 (where  = 1 + 2  = 2)

=  ln 2

¤
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Fig. 19.5. Solid generated by revolving  about the -axis (in Example 19.22).

19.5 Final Note

The preceding discussion of partial fraction decomposition assumes that () =

 ()() is a proper rational function. If this is not the case and we are faced

with an improper rational function  , we divide the denominator into the nu-

merator and express  in two parts. One part will be a polynomial, and the

other will be a proper rational function.

For example, given the function

() =
34 + 53 − 42 + 7− 1

2 + 2− 3
we perform long division.

It follows that

() = 32 − + 7 +
−10+ 20
2 + 2− 3

The first piece (a polynomial) is easily integrated, and the second piece (ra-

tional function) now qualifies for the methods described in this section.
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Taylor polynomials

20.1 Taylor and Maclaurin polynomials

We have seen that approximation is a basic theme in calculus. For example, we

may approximate a differentiable function () at  =  by the linear function

(called the linearization)

() = () +  0()(− )

However, a drawback of the linearization is that it is accurate only in a small

interval around  = . Taylor polynomials are higher-degree approximations

that generalize the linearization using the higher derivatives  ()(). They

are useful because, by taking sufficiently high degree, we can approximate

transcendental functions such as sin and  to arbitrary accuracy on any

given interval.

Assume that () is defined on an open interval  and that all higher deriv-

atives  ()() exist on  . Fix a number  ∈ . The th Taylor polynomial

for f centered at  =  is the polynomial

() = () +
 0()
1!

(− ) +
 00()
2!

(− )2 + +
 ()()

!
(− )

It is convenient to regard () itself as the zeroth derivative  (0)(). Then we

may write the Taylor polynomial in summation notation

() =

X
=0

 ()()

!
(− ) 
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When  = 0, () is also called the th Maclaurin polynomial. The first

few Taylor polynomials are

0() = () (a constant term)

1() = () +
 0()
1!

(− )

2() = () +
 0()
1!

(− ) +
 00()
2!

(− )2

3() = () +
 0()
1!

(− ) +
 00()
2!

(− )2 +
 000()
3!

(− )3

Note that 1() is the linearization of () at . In most cases, the higher-

degree Taylor polynomials provide increasingly better approximations to ().

Before computing some Taylor polynomials, we record two important proper-

ties that follow from the definition:

• () = () [since all terms in () after the first are zero at  = ].

• () is obtained from −1() by adding on a term of degree :

() = −1() +
 ()()

!
(− )

Example 20.1 Let () =
√
+ 1. Compute () at  = 3 for  = 0 1 2 3

and 4.

() =
√
+ 1

Solution: First evaluate the derivatives  ()(3):

() =
√
+ 1 (3) = 2

 0() = 1
2
√
+1

 0(3) =
1

4

 00() = − 1

4(+1)
3
2

 00(3) = − 1
32

 000() = 3

8(+1)
5
2

 000(3) = 3
256

 (4)() = − 15

16(+1)
7
2

 (4)(3) = − 15
2048
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Fig. 20.1. Graph of () =
√
1 +  and its first five Taylor polynomials centered at

 = 3

Then compute the coefficients
 ()(3)

!

Constant term = (3) = 2

Coefficient of (− 3) =  0(3) =
1

4

Coefficient of (− 3)2 =
 00(3)
2!

= − 1
64

Coefficient of (− 3)3 =
 000(3)
3!

=
1

512

Coefficient of (− 3)4 =
 (4)(3)

4!
= − 5

16 384

The first five Taylor polynomials centered at  = 3 are:
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0() = 2

1() = 2 +
1

4
(− 3)

2() = 2 +
1

4
(− 3)− 1

64
(− 3)2

3() = 2 +
1

4
(− 3)− 1

64
(− 3)2 + 1

512
(− 3)3

4() = 2 +
1

4
(− 3)− 1

64
(− 3)2 + 1

512
(− 3)3 − 5

16 384
(− 3)4

¤

Example 20.2 (Maclaurin Polynomials for () = cos) Find the Maclau-

rin polynomials of () = cos.

Solution: Recall that the Maclaurin polynomials are the Taylor poly-

nomials centered at  = 0. The key observation is that the derivatives of

() = cos form a pattern that repeats with period 4:

 0() = − sin  00() = − cos  000() = sin  (4)() = sin

and, in general,  (+4)() =  ()() At  = 0, the derivatives form the repeat-

ing pattern 1 0 −1 and 0

(0)  0(0)  00(0)  000(0)  (4)(0)  (5)(0)  (6)(0)  (7)(0) ...

1 0 −1 0 1 0 −1 0 ...

In other words, the even derivatives are  (2)(0) = (−1) and the odd deriv-
atives are zero:  (2+1)(0) = 0. Therefore, the coefficient of 2 is (−1)(2)!
and the coefficient of 2+1 is zero. We have

0() = 1() = 1

2() = 3() = 1− 1

2!
2

4() = 5() = 1− 1

2!
2 +

1

4!
4
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Fig. 20.2. Graphs of Maclaurin polynomials for () = cos() The graph of () is

shown in red.

and, in general,

2() = 2+1() = 1− 1

2!
2 +

1

4!
4 − 1

6!
6 + + (−1) 1

(2)!
2

¤
Taylor polynomials () are designed to approximate () in an inter-

val around  = . Figure 20.2 shows the first few Maclaurin polynomials for

() = cos. Observe that as  gets larger, () approximates () = cos

well over larger and larger intervals. Outside this interval, the approximation

fails. Notice additionaly, that all of the polynomials () are the even func-

tions (as cos is).

Figure 20.3 shows the first few Maclaurin polynomials for () = sin.

Observe that again, as  gets larger, () approximates () = sin well

over larger and larger intervals. Outside this interval, the approximation fails.

Notice, that this time all of the polynomials () are the odd functions (as

sin is). The reader is asked to calculate the explicit form of several first

Maclaurin polynomials for the function sin

20.2 The Remainder Term

Our next goal is to study the error |()− ()| in the approximation pro-
vided by the th Taylor polynomial centered at  = . Define the th remain-
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Fig. 20.3. Graphs of Maclaurin polynomials for () = sin() The graph of () is

shown in red.

Fig. 20.4. Graphs of Maclaurin polynomials for () =  The graph of () is shown

in red.
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der for () at  =  by

() = ()− ()

The error is the absolute value of the remainder. Also, () = () +(),

so

() = () +
 0()
1!

(− ) +
 00()
2!

(− )2 + +
 ()()

!
(− ) +()

Theorem 20.3 (Taylor’s Theorem) Assume that  (+1)() exists and is

continuous. Then

() =
1

!

R 

(− ) (+1)() (20.1)

Proof. Set

() =
1

!

Z 



(− ) (+1)()

Our goal is to show that () = (). For  = 0, 0() = () − ()

and the desired result is just a restatement of the Fundamental Theorem of

Calculus:

0() =

Z 




0
() = ()− () = 0()

To prove the formula for   0, we apply Integration by Parts to () with

() =
(− )

!
 () =  ()()

() =

Z 



()0()

= ()()| −
Z 



0()()

=
1

!
(− ) ()()| −

1

!

Z 



(−) (− )−1 ()()

= −(− )

!
 ()() + −1()
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This result can be rewritten as

−1() =
 ()()

!
(− ) + ()

Now apply this relation  times:

() = () + 0()

= () +
 0()
1!

(− ) + 1()

= () +
 0()
1!

(− ) +
 00()
2!

(− )2 + 2()

...

= () +
 0()
1!

(− ) +
 00()
2!

(− )2 + +
 ()()

!
(− ) + ()

This shows that () = () + () and hence () = () as desired.

Although Taylor’s Theorem gives us an explicit formula for the remainder,

we will not use this formula directly. Instead, we will use it to estimate the

size of the error.

Theorem 20.4 (Error Bound) Assume that  (+1)() exists and is contin-

uous. Let  be a number such that
¯̄
 (+1)()

¯̄
≤  for all  between  and

 Then

|()− ()| ≤ 
|− |+1
(+ 1)!

(20.2)

Proof.Assume that  ≥  (the case  ≤  is similar). Then, since
¯̄
 (+1)()

¯̄
≤

 for  ≤  ≤ ,

|()− ()| = |()| =
¯̄̄̄
1

!

Z 



(− ) (+1)()

¯̄̄̄
and on the basis of the Triangle Inequality for Integrals (see p. 258)

≤ 1

!

¯̄̄̄Z 



(− ) (+1)()

¯̄̄̄
≤ 

!

Z 



(− )()

=


!

−(− )+1

+ 1
|= = 

|− |+1
(+ 1)!
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Example 20.5 Let () be the th Maclaurin polynomial for () = cos.

Find a value of  such that

|(02)− cos(02)|  10−5

Solution: Since
¯̄
 ()()

¯̄
is |cos| or |sin| depending on whether  is

even or odd, we have
¯̄
 ()()

¯̄
≤ 1 for all  Thus, we may apply Error Bound

with  = 1;

|(02)− cos(02)| ≤ 
|02− 0|+1
(+ 1)!

=
|02|+1
(+ 1)!

To make the error less than 10−5, we must choose  so that |02|
+1

(+1)!
 10−5

 2 3 4
|02|+1
(+1)!

023

3!
≈ 000134 024

4!
≈ 6 667× 10−5 025

5!
= 2 67× 10−6  10−5

We see that the error is less than 10−5 for n =4. To verify this, recall that

4() = 1− 1

2!
2 +

1

4!
4

by Example 20.2. The following values from a calculator confirm that the error

is significantly less than 10−5 as required:

  = |4(02)− cos(02)| = |0980 06667− 098006657| ≈ 10−7
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Fig. 20.5. Graphs of Maclaurin polynomials for () = ln(+ 1) The graph of ()

is shown in red.



Appendixes

A1. Greek letters used in mathematics, science, and
engineering

The Greek letter forms used in mathematics are often different from those used

in Greek-language text: they are designed to be used in isolation, not connected

to other letters, and some use variant forms which are not normally used in

current Greek typography. The table below shows Greek letters rendered in

TEX

Table 20.1. Greek letters used in mathematics

 alpha  nu

 beta  Ξ xi

 Γ gamma  Π pi

 ∆ delta  rho

 epsilon  Σ sigma

 zeta  tau

 eta  upsilon

 Θ theta  Φ phi

 iota  chi

 kappa  Ψ psi

 Λ lambda  Ω omega

 mu † dagger

TEXis a typesetting system designed and mostly written by Donald Knuth

at Stanford and released in 1978.

Together with the Metafont language for font description and the Computer

Modern family of typefaces, TeX was designed with two main goals in mind:

to allow anybody to produce high-quality books using a reasonably minimal

amount of effort, and to provide a system that would give exactly the same

results on all computers, now and in the future.
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Cauchy Augustin—Louis, 85

common logarithms, 182

absolute maximum, 170

absolute value function, 73

acceleration of the object, 77

arithmetic mean, 54

base for the natural logarithm, 182

Bernoulli’s inequality, 46

binomial coefficient, 61

binomial theorem, 61

bisection method, 130

cancellation equations, 195

change of sign, 63

common logarithmic function, 234

complete induction, 57

conclusion, 30

continity on the closed interval, 112

Continuity at a point, 87

continuity from the left, 112

continuity from the right, 112

continuous function, 79

counterexample, 39

critical point for the function, 171

derivative as a limit of difference

quotients, 120

derivative of a function, 69, 76

derivative of a linear combination,

142

derivative of a product, 143

difference quotient, 141

difference quotients, 121

difference rule, 142

differentiable function, 70, 121

Differential calculus, 15

differentiation rules, 74

diffrentiation, 70

direction field, 176

discontinuous function, 119

disk, 239

divide and conquer strategy, 57

e as a limit, 183

e number, 182

equivalent statements, 33

everywhere continuous functions, 87

exponential function, 221

exponential function to the base a,

232

extreme value theorem, 134

extremum of a function, 169

Fibonacci numbers, 59

function continuous on an open in-

terval, 87

generalized triangle inequality, 42

geometric mean, 54

global maximum, 170

global minimum, 171

harmonic mean, 54

hypothesis, 30

implication, 30
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implicit differentiation, 161

implicitly defined function, 160

inductive definition, 58

infinite discontinuity, 119

infinite limits, 104

inside function, 157

instantaneous velocity, 66, 71

Integral calculus, 15

intermediate value theorem, 129

inverse functions, 195

invertible function, 197

jump discontinuity, 119

left-hand limit, 107

left-hand limits, 104

limit of a composite function, 97

limits at infinity, 104

local maximum, 170

local minimum, 171

logarithm, 175

Logarithmic differentiation, 230

logarithmic function to the base a,

233

logarithmic functions, 175

mathematical induction, 39

max-min theorem, 133, 134

maximum in the interval, 133

minimum in the interval, 133

natural exponential function, 221

natural logarithmic function, 175

necessary condition, 34

one-to-one function, 197

ordinate, 19

parabolic segment, 19

Pascal triangle identity, 62

postage stamp problem, 61

Principle of Mathematical Induction,

40

principle of mathematical induction,

39

principle of persistence of inequali-

ties, 79

product rule, 143

proposition, 30

quotient rule, 149

rate of change, 71

rational functions, 150

rational power rule, 165

reciprocal rule, 146

recursion, 57

recursive definition, 58

relative maximum, 170

removable discontinuity, 119

right-hand limit, 107

right-hand limits, 104

Sandwich principle, 99

second derivative of a function, 76

slope field, 176

slope of the curve, 71

solid of revolution, 239

squeeze principle, 99

standard normal probability density

function, 226

statement, 30

strong induction, 57

stronger statement, 34

sufficient condition, 34

sum rule, 142

tangent line, 70, 71

transcendental functions, 175

uniform motion, 66

velocity, 66, 71
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vertex of the parabola, 76

vertical asymptote, 110

vertical tangent line, 124

weaker statement, 34

well-ordering property, 57


