Derivatives: you must know this!

Rules for Derivatives
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” Arithmetic” Rules:
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The Chain Rule:
(go f)(z) =g (f(x)) f'(2).

Derivative as a Slope of the Tangent Line

If y = f(x) is differentiable at xg, then f’(z¢) is a slope of the tangent line at (zq, f(z0)).

The equation of the tangent line is:

y = f(xo) + f'(z0)(x — x0).



Higher Derivatives
y" = (y=DY dlan =2,3,4,. ...
By agreement: y(©) = y.

For small orders we write: 3", v, y'V, y¥

, Y’ , ete.

Implicit Differentiation
If y = f(x) is implicitly defined by some equality, then we don’t need to solve for y. We
differentiate the whole equality using Chain Rule for terms with y. For example if

v — 32%y* — bx = xsiny
then
3y2y’ — (62y? + 62%yy’) — 5 =siny + xcosy -/,

and now solve for y:
, 6xy? + 5+ siny

v = 3y? — 6xy? — xcosy




