PROPERTIES OF FUNCTIONS

1. Finding formulas for functions.

1. Consider a triangle ABC, where AC = b and BC = a are constant, but the angle x at the vertex C changes. Find the formula for the area of this triangle as a function of x. Sketch the graph.

2. Find the formula for the volume of a cylinder inscribed into the sphere of a radius R as a function of:

a) a radius r of the base of the cylinder;

b) an altitude h of the cylinder.

2. Find the domain, the image, and sketch the graph of a function:

a) $y = \sqrt{(x+2)^2} + \sqrt{(x-1)^2}$

b) $y = \sqrt{1 - \cos^2 x} + \sin x$

c) $y = \sqrt{x^2 - 4}$ d) $y = \sqrt{\ln(x^2 - 4)}$

e) $y = \ln \cos x$.

3. Even functions and odd functions.

1. A function f(x) is odd and its domain is \mathbb{R} . What can you tell about a function (is it even or odd?):

a) kf(x); b) f(kx); k=const?

2. Complete the definition

$$f(x) = \begin{cases} 2x + 1 & \text{for } x > 0\\ & \text{for } x = 0\\ & \text{for } x < 0 \end{cases}$$

so as to get: a) an even function; b) an odd function. Sketch the graphs for both cases. Remember that the graph of an even function is symmetric around Oy-axis, and the graph of an odd function is circularly symmetric, around the origin O.

4. Periodic functions.

A function f is said to be periodic with period T (T being a nonzero constant) if we have f(x+T) = f(x) for all values of x in the domain. The most important examples are the trigonometric functions.

The graph of a periodic function is invariant under translation in the x-direction by a distance of T.

Periodic functions are used in physics to describe oscillations, waves, and other phenomena that exhibit periodicity.

1) Sketch the graph of a periodic function, which has the same graph as the function $y = x^2$: a) on the interval [0, 1); b) on the interval $\left[-\frac{1}{2}, \frac{1}{2}\right]$.

2) We define *Dirichlet function* as:

$$f(x) = \begin{cases} 1 & \text{for } x \in \mathbb{Q} \\ 0 & \text{for } x \notin \mathbb{Q}. \end{cases}$$

Is this function periodic?

3) Show that if f is periodic with period T than g defined by g(x) = f(3x) has a period $\frac{1}{2}T$.

5. Graphs of functions.

1. Find the graphs of functions:

a) $y = \cos(x + \frac{\pi}{4}) - 1$ a) $y = \cos(x + \frac{4}{4})$ b) $y = \log_3(3 - x)$ c) $y = 2^{x+3}$ d) $y = 2\sin\frac{x}{2}$ e) $y = \frac{x}{x-2}$

6. Composite functions.

In mathematics, function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: X \to Y$ and $g: Y \to Z$ can be composed to yield a function which maps $x \in X$ to g(f(x)) in Z. Intuitively, if z is a function of y, and y is a function of x, then z is a function of x. The resulting composite function is denoted $g \circ f : X \to Z$, defined by $(g \circ f)(x) = g(f(x))$ for all $x \in X$. Intuitively, composing two functions is a chaining process in which the output of the inner function becomes the input of the outer function.

The notation $q \circ f$ is read as "q circle f", or "q round f", or "q composed with f", "q after f", "g following f", or "g of f", or "g on f".

- 1. Find the compositions $f \circ f, f \circ g, g \circ f, g \circ g$, if:
- a) $f(x) = \frac{1}{x}, g(x) = x^2;$
- b) $f(x) = \log_2 x, g(x) = 2^x.$ c) $f(x) = \frac{1}{x-1}, g(x) = x^2 + 2x;$ b) $f(x) = x^3, g(x) = 2^x.$

7. Inverse function.

An inverse function is a function that "reverses" another function: if the function f applied to an input x gives a result of y, then applying its inverse function g to y gives the result x, and vice versa. i.e., f(x) = y if and only if g(y) = x.

1. Show that a following function is one-to-one and find its inverse function:

a) y = 3x + 4;

b) $y = 10^x$;

- c) $y = \log \log x$;
- d) $y = x + 2\sqrt{x} + 1$.

2. For a following function find an interval on which it is one-to-one. Then find its inverse function:

a) $y = \frac{1}{x^2};$ b) $y = \frac{1}{1+x^2};$ c) $y = x^2 - 4x + 3.$ d) $y = x^2 - 2x + 3$ e) $y = 3^x + 3^{-x}$

8. Inverse trigonometric functions.

- 1. Find
- a) $\operatorname{arccos}(-\frac{\sqrt{3}}{2}) + \operatorname{arccin} 1 + \arctan \sqrt{3}$. b) $2 \operatorname{arccos}(-\frac{1}{2}) + \arctan(\tan \frac{7}{8}\pi) \arctan 1$.
- 2. Check the following identities
- a) $\arcsin x + \arccos x = \frac{\pi}{2} \operatorname{dla} x \in [-1, 1]$ b) $\cos(\arcsin x) = \sqrt{1 x^2} \operatorname{dla} x \in [-1, 1]$
- 3. Find the domain, the image, and sketch the graph of a function:
- a) $y = \arcsin(x 2)$
- b) $y = 3 + \arctan(x+2)$
- c) $y = 1 + \frac{1}{2} \arccos(2x 1)$

9. Hyperbolic functions.

Let $e \approx 2.718...$ be the Euler's number. We define hyperbolic sine as

$$\sinh x = \frac{e^x - e^{-x}}{2}.$$

and **hyperbolic cosine** as

$$\cosh x = \frac{e^x + e^{-x}}{2}$$

- 1. Prove that
- a) $\cosh^2 x \sinh^2 x = 1.$
- b) $\sinh(x+y) = \sinh x \cosh y + \cosh x \sinh y$.
- c) $\sinh(2x) = 2\sinh x \cosh x$.