Properties of Functions

1. Finding formulas for functions.
2. Consider a triangle $A B C$, where $A C=b$ and $B C=a$ are constant, but the angle x at the vertex C changes. Find the formula for the area of this triangle as a function of x. Sketch the graph.
3. Find the formula for the volume of a cylinder inscribed into the sphere of a radius R as a function of:
a) a radius r of the base of the cylinder;
b) an altitude h of the cylinder.
4. Find the domain, the image, and sketch the graph of a function:
a) $y=\sqrt{(x+2)^{2}}+\sqrt{(x-1)^{2}}$
b) $y=\sqrt{1-\cos ^{2} x}+\sin x$
c) $y=\sqrt{x^{2}-4}$
d) $y=\sqrt{\ln \left(x^{2}-4\right)}$
e) $y=\ln \cos x$.
5. Even functions and odd functions.
6. A function $f(x)$ is odd and its domain is \mathbb{R}. What can you tell about a function (is it even or odd?):
a) $k f(x)$; b) $f(k x) ; k=$ const?
7. Complete the definition

$$
f(x)=\left\{\begin{array}{lll}
2 x+1 & \text { for } & x>0 \\
& \text { for } & x=0 \\
& \text { for } & x<0
\end{array}\right.
$$

so as to get: a) an even function; b) an odd function. Sketch the graphs for both cases. Remember that the graph of an even function is symmetric around $O y$-axis, and the graph of an odd function is circularly symmetric, around the origin O.
4. Periodic functions.

A function f is said to be periodic with period T (T being a nonzero constant) if we have $f(x+T)=f(x)$ for all values of x in the domain. The most important examples are the trigonometric functions.
The graph of a periodic function is invariant under translation in the x-direction by a distance of T.
Periodic functions are used in physics to describe oscillations, waves, and other phenomena that exhibit periodicity.

1) Sketch the graph of a periodic function, which has the same graph as the function $y=x^{2}$:
a) on the interval $[0,1) ; b)$ on the interval $\left[-\frac{1}{2}, \frac{1}{2}\right]$.
2) We define Dirichlet function as:

$$
f(x)= \begin{cases}1 & \text { for } x \in \mathbb{Q} \\ 0 & \text { for } x \notin \mathbb{Q}\end{cases}
$$

Is this function periodic?
3) Show that if f is periodic with period T than g defined by $g(x)=f(3 x)$ has a period $\frac{1}{3} T$.
5. Graphs of functions.

1. Find the graphs of functions:
a) $y=\cos \left(x+\frac{\pi}{4}\right)-1$
b) $y=\log _{3}(3-x)$
c) $y=2^{x+3}$
d) $y=2 \sin \frac{x}{2}$
e) $y=\frac{x}{x-2}$
2. Composite functions.

In mathematics, function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ can be composed to yield a function which maps $x \in X$ to $g(f(x))$ in Z. Intuitively, if z is a function of y, and y is a function of x, then z is a function of x. The resulting composite function is denoted $g \circ f: X \rightarrow Z$, defined by $(g \circ f)(x)=g(f(x))$ for all $x \in X$. Intuitively, composing two functions is a chaining process in which the output of the inner function becomes the input of the outer function.
The notation $g \circ f$ is read as " g circle $f "$, or "g round $f "$, or " g composed with $f ", " g$ after f ", "g following f ", or " g of $f "$, or " g on f ".

1. Find the compositions $f \circ f, f \circ g, g \circ f, g \circ g$, if:
a) $f(x)=\frac{1}{x}, g(x)=x^{2}$;
b) $f(x)=\log _{2} x, g(x)=2^{x}$.
c) $f(x)=\frac{1}{x-1}, g(x)=x^{2}+2 x$;
b) $f(x)=x^{3}, g(x)=2^{x}$.
2. Inverse function.

An inverse function is a function that "reverses" another function: if the function f applied to an input x gives a result of y, then applying its inverse function g to y gives the result x, and vice versa. i.e., $f(x)=y$ if and only if $g(y)=x$.

1. Show that a following function is one-to-one and find its inverse function:
a) $y=3 x+4$;
b) $y=10^{x}$;
c) $y=\log \log x$;
d) $y=x+2 \sqrt{x}+1$.
2. For a following function find an interval on which it is one-to-one. Then find its inverse function:
a) $y=\frac{1}{x^{2}}$;
b) $y=\frac{1}{1+x^{2}}$;
c) $y=x^{2}-4 x+3$.
d) $y=x^{2}-2 x+3$
e) $y=3^{x}+3^{-x}$
3. Inverse trigonometric functions.
4. Find
a) $\arccos \left(-\frac{\sqrt{3}}{2}\right)+\arcsin 1+\arctan \sqrt{3}$.
b) $2 \arccos \left(-\frac{1}{2}\right)+\arctan \left(\tan \frac{7}{8} \pi\right)-\arctan 1$.
5. Check the following identities
a) $\arcsin x+\arccos x=\frac{\pi}{2}$ dla $x \in[-1,1]$
b) $\cos (\arcsin x)=\sqrt{1-x^{2}}$ dla $x \in[-1,1]$
6. Find the domain, the image, and sketch the graph of a function:
a) $y=\arcsin (x-2)$
b) $y=3+\arctan (x+2)$
c) $y=1+\frac{1}{2} \arccos (2 x-1)$
7. Hyperbolic functions.

Let $e \approx 2.718 \ldots$ be the Euler's number. We define hyperbolic sine as

$$
\sinh x=\frac{e^{x}-e^{-x}}{2}
$$

and hyperbolic cosine as

$$
\cosh x=\frac{e^{x}+e^{-x}}{2}
$$

1. Prove that
a) $\cosh ^{2} x-\sinh ^{2} x=1$.
b) $\sinh (x+y)=\sinh x \cosh y+\cosh x \sinh y$.
c) $\sinh (2 x)=2 \sinh x \cosh x$.
