Homework 4: systems with a parameter, Cramer's Rule, vector space

1. Express the system in the form $\mathbf{A x}=\mathbf{b}$. Solve it by first finding \mathbf{A}^{-1}.

$$
\begin{aligned}
x+2 y+3 z & =3 \\
x+y+z & =1 \\
x-y+2 z & =1
\end{aligned}
$$

2. Solve by Cramer's Rule

$$
\left\{\begin{aligned}
x_{1}+x_{2}+x_{3} & =1 \\
x_{1}+2 x_{2}+3 x_{3} & =2 \\
x_{1}+4 x_{2}+10 x_{3} & =-1
\end{aligned}\right.
$$

3. For which value of a the following system has a solution? Find the solution.

$$
\left\{\begin{aligned}
x+a y+2 z & =4 \\
a x+y & =1 \\
a x+y-2 z & =1
\end{aligned}\right.
$$

4. Determine whether $(4,6,6)$ is a linear combination of the vectors $\mathbf{v}_{1}=(1,2,-1)$ and $\mathbf{v}_{2}=(3,5,2)$ in \mathbb{R}^{3}.
5. Prove that $\{(1,1),(-1,1)\}$ is a basis for \mathbb{R}^{2}.

Hint. You must show that: 1. vectors are linearly independent; 2 . any vector $(x, y) \in \mathbb{R}^{2}$ is a linear combination of them.

Please write the solutions clearly (by hand) on A4 paper and give it to me before 15/01/2019. Every solution will be given 1 point (correct, minor error possible), 0.5 pt . (good idea, but not all correct), 0 pt. (nothing worthy). The maximum for this homework is 5 pts.

