Homework 3: Systems of Linear Equations and Inverse Matrix

1. Solve by Gauss-Jordan elimination method

2. Solve by Gauss-Jordan elimination method

x	+	2y	+	3z	=	3
x	+	y	+	z	=	1
3x	—	y	+	2z	=	1

3. Solve by Gauss-Jordan elimination method

2x	+	3y	—	z	+	u	=	-3
3x	_	y	+	2z	+	4u	=	8
x	+	y	+	3z	—	2u	=	6
-x	+	2y	+	3z	+	5u	=	3

4. Solve the matrix equation

$$\begin{bmatrix} 2 & 1 & -1 \\ 3 & 1 & -2 \\ 1 & 0 & 1 \end{bmatrix} X = \begin{bmatrix} 2 & 3 & -1 \\ -1 & 0 & 2 \\ 2 & -1 & 1 \end{bmatrix}$$

5. Find by Gauss-Jordan elimination method the inverse matrix of

[1]	1	1	1]
1	1	$^{-1}$	-1
1	-1	1	-1
[1	-1	-1	1

Please write the solutions clearly (by hand) on A4 paper and give it to me before 18/12/2018. Every solution will be given 1 point (correct, minor error possible), 0.5 pt. (good idea, but not all correct), 0 pt. (nothing worthy). The maximum for this homework is 5 pts.