1. For every statement below write their negation (with the symbol \sim), then transform them to form without \sim :

a) $\forall x \exists a \ x > a;$ b) $x < a \land x > b;$ c) $\forall x \exists a \exists b \ (x < a \land x > b);$ d) $x > b \Rightarrow x > a.$ e) $\exists x \ x^3 - x = 0;$ f) $\forall x, y \ (y > x \lor y \leqslant x);$ g) $\exists y \forall x \ x + y = 0;$ h) $\forall x \exists y \ x + y = 0;$ i) $\forall x \exists y \ (x - y)^2 = x^2 - y^2.$

2. The following formula says that *disjunction is distributive over conjunction*. Writing a truth table show that it is a tautology (that means it is true for all possible valuations):

$$p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r).$$

3. Prove that the following formula, called *Indirect Reasoning* is a tautology.

$$[(p \Rightarrow q) \land (\sim q)] \Rightarrow \sim p).$$

4. Show that a common fallacy:

$$[(p \Rightarrow q) \land (\sim p)] \Rightarrow \sim q).$$

is not a law of logic.

5. Show by induction that a set of n elements has 2^n subsets. *Remark*: write clearly 1. base case; 2. induction step; 3. conclusion

- **6.** Show by induction that for every $n \in \mathbb{N}$: $1 + 3 + \cdots + (2n 1) = n^2$
- 7. Show by induction that for every $n \in \mathbb{N}$ the number $7^n 1$ can be divided by 6.