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Preface

These are lecture notes for a first course in linear algebra; the prerequisite

is a good course in Precalculus. I personally believe that many more people

need linear algebra than calculus, thus the material in these notes is absolutely

fundamental for all modern engineers in the digitalization era.

Linear algebra is one of the core topics studied at university level by students

on many different types of degree programme. Alongside calculus, it provides

the framework for mathematical modelling in many diverse areas. This text

sets out to introduce and explain linear algebra to students from electronics

and telecommunication. It covers all the material that would be expected to be

in most first-year university courses in the subject, together with some more

advanced material that would normally be taught later.

This text represents our best effort at distilling from my experience what it

is that I think works best in helping students not only to do linear algebra,

but to understand it. I regard understanding as essential.

I have attempted to write a user-friendly, fairly interactive and helpful text,

and I intend that it could be useful not only as a course text, but for self-study.

These notes are quite informal, but they have been carefully read and criticized

by the students, and their comments and suggestions have been incorporated.

Although I’ve tried to be careful, there are undoubtedly some errors remaining.

If you find any, please let me know.

Carefully designed examples and exercises are provided in the supplemen-

tary volume of "Linear Algebra , Problems , Solutions and Tips"

Andrzej Máckiewicz

Poznán, September 2014
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1

Complex numbers

Many practical mathematical problems, especially in physics and electron-

ics, involve square roots of negative numbers (that is, complex numbers). For

example, modern theories of heat transfer, fluid flow, damped harmonic oscil-

lation, alternating current circuit theory, quantum mechanics, and relativity–

all beyond the scope of this text–depend on the use of complex quantities.

Therefore, our next goal is to extend our knowledge to the realm of complex

numbers.

One excellent reason for generalizing to the complex number system is that

we can take advantage of the Fundamental Theorem of Algebra, which states

that every −th degree polynomial can be factored completely when complex
roots are permitted. Later we will see how this permits us to find additional

(non-real) solutions to eigenvalue problems.

1.1 Are complex numbers necessary?

Much of mathematics is concerned with various kinds of equations, of which

equations with numerical solutions are the most elementary. The most funda-

mental set of numbers is the set N = {1 2 3 } of natural numbers. If  and 
are natural numbers, then the equation + =  has a solution within the set

of natural numbers if and only if   . If  ≥  we must extend the number

system to the larger set Z = {−2−1 0 1 2 3} of integers. Here we get a
bonus, for the equation +  =  has a solution  = −  in Z for all  and 

in Z.
If   ∈ Z and  6= 0, then the equation + = 0 has a solution in Z if and

only if  divides . Otherwise we must once again extend the number system

to the larger set Q of rational numbers. Once again we get a bonus, for the

equation +  = 0 has a solution  = − in Q for all  6= 0 in Q and all 
in Q.
When we come to consider a quadratic equation 2 +  +  = 0 (where

   ∈ Q and  6= 0) we encounter our first real difficulty. We may safely

assume that   and  are integers: if not , we simply multiply the equation

by a suitable positive integer. The standard solution to the equation is given
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by the familiar formula

 =
−±

√
2 − 4
2



Let us denote 2 − 4, the discriminant of the equation, by ∆. If ∆ is the

square of an integer (what is often called a perfect square) then the equation

has rational solutions, and if ∆ is positive then the two solutions are in the

extended set R of real numbers. But if ∆  0 then there is no solution even

within R
We have already carried out three extensions (to Z, to Q, to R) from our

starting point in natural numbers, and there is no reason to stop here. We can

modify the standard formula to obtain

 =
−±

p
(−1) (4− 2)

2

where 4 − 2  0. If we postulate the existence of
p
(−1), then we get a

"solution"

 =
−±

p
(−1)

p
(4− 2)

2


Of course we know that there is no real number
p
(−1) , but the idea seems

in a way to work. If we look at a specific example,

2 + 4+ 13 = 0

and decide to write  for
p
(−1), the formula gives us two solutions  = −2+3

and  = −2−3 If we use normal algebraic rules, replacing 2 by −1 whenever
it appears, we find that

(−2 + 3)2 + 4(−2 + 3) + 13 = (−2)2 + 2(−2)(3) + (3)2 − 8 + 12+ 13
= 4− 12− 9− 8 + 12+ 13 (since 2 = −1)
= 0

and the validity of the other root can be verified in the same way. We can

certainly agree that if there is a number system containing "numbers" + 

where   ∈ R, then they will add and multiply according to the rules

(1 + 1) + (2 + 2) = (1 + 2) + (1 + 2) (1.1)

(1 + 1)(2 + 2) = (12 − 12) + (12 + 12) (1.2)
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We shall see shortly that there is a way, closely analogous to our picture of

real numbers as points on a line, of visualizing these new complex numbers.

Can we find equations that require us to extend our new complex number

system (which we denote by C) still further? No, in fact we cannot: the im-
portant Fundamental Theorem of Algebra, (whose proof is beyond the scope

of this text), states that, for all  ≥ 1, every polynomial equation


 + −1−1 + + 1+ 0 = 0

with coefficients 0 1   in C and  6= 0, has all its roots within C. This
is one of many reasons why the number system C is of the highest importance
in the development and application of mathematical ideas.

1.2 Sums and products

Complex numbers can be defined as ordered pairs ( ) of real numbers that

are to be interpreted as points in the complex plane, with rectangular coor-

dinates  and , just as real numbers  are thought of as points on the real

line. When real numbers  are displayed as points ( 0) on the real axis, it is

clear that the set of complex numbers includes the real numbers as a subset.

Complex numbers of the form (0 ) correspond to points on the  axis and

are called pure imaginary numbers when  6= 0. The  axis is then referred to
as the imaginary axis.

It is customary to denote a complex number ( ) by , so that (see Fig.

1.1)

 = ( ) (1.3)

The real numbers  and  are, moreover, known as the real and imaginary

parts of , respectively; and we write

 = Re   = Im  (1.4)

Two complex numbers 1 and 2 are equal whenever they have the same

real parts and the same imaginary parts. Thus the statement 1 = 2 means

that 1 and 2 correspond to the same point in the complex, or , plane.

The sum 1+2 and product 12 of two complex numbers 1 = (1 1) and

2 = (2 2) are defined as follows:

(1 1) + (2 2) = (1 + 2 1 + 2) (1.5)

(1 1)(2 2) = (12 − 12 12 + 12) (1.6)
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Fig. 1.1. Complex number  as a point in the complex plane.

Note that the operations defined by equations (1.5) and (1.6) become the

usual operations of addition and multiplication when restricted to the real

numbers:

(1 0) + (2 0) = (1 + 2 0)

(1 0)(2 0) = (12 0)

The complex number system is, therefore, a natural extension of the real num-

ber system. Any complex number  = ( ) can be written

 = ( 0) + (0 )

and it is easy to see that (0 1)( 0) = (0 ) Hence

 = ( 0) + (0 1)( 0);

and if we think of a real number as either  or ( 0) and let  denote the pure

imaginary number (0 1), as shown in (Fig. 1.1), it is clear that1

 = +  (1.7)

1 In electrical engineering, the letter  is used instead of .
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Also, with the convention that 2 = , 3 = 2, etc., we have

2 = (0 1)(0 1) = (−1 0)
or

2 = −1 (1.8)

Because ( ) = +  definitions (1.5) and (1.6) become

(1 + 1) + (2 + 2) = (1 + 2) +  (1 + 2)  (1.9)

(1 + 1)(2 + 2) = (12 − 12) +  (12 + 12)  (1.10)

Observe that the right-hand sides of these equations can be obtained by for-

mally manipulating the terms on the left as if they involved only real numbers

and by replacing 2 by −1 when it occurs. Also, observe how equation (1.10)
tells us that any complex number times zero is zero. More precisely,

·0 = (+ )(0 + 0) = 0 + 0 = 0

for any  = + .

1.3 Basic algebraic properties

Various properties of addition and multiplication of complex numbers are the

same as for real numbers. We list here the more basic of these algebraic prop-

erties and verify some of them. Most of the others are verified in the exercises.

The commutative laws

1 + 2 = 2 + 1 (1.11)

and the associative laws

21 = 21 (1.12)

follow easily from the definitions in Sec. 1.2 of addition and multiplication of

complex numbers and the fact that real numbers obey these laws. For example,

if

1 = (1 1) and 2 = (2 2)

then

1 + 2 = (1 + 2 1 + 2) = (2 + 1 2 + 1) = 2 + 1

Verification of the rest of the above laws, as well as the distributive law

 (1 + 2) = 1 + 2 (1.13)
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is similar.

According to the commutative law for multiplication,  = . Hence one

can write  = + instead of  = +. Also, because of the associative laws,

a sum 1 + 2 + 3 or a product 123 is well defined without parentheses, as

is the case with real numbers.

The additive identity 0 = (0 0) and the multiplicative identity 1 = (1 0) for

real numbers carry over to the entire complex number system. That is,

 + 0 =  and  · 1 =  (1.14)

for every complex number . Furthermore, 0 and 1 are the only complex num-

bers with such properties (see Exercise ??).

There is associated with each complex number  = ( ) an additive inverse

− = (−−) (1.15)

satisfying the equation  + (−) = 0. Moreover, there is only one additive

inverse for any given , since the equation

( ) + ( ) = (0 0)

implies that

 = − and  = −
For any nonzero complex number  = ( ), there is a number −1 such

that −1 = 1. This multiplicative inverse is less obvious than the additive

one. To find it, we seek real numbers  and , expressed in terms of  and ,

such that

( )( ) = (1 0)

According to equation (1.6), Sec. 1.2, which defines the product of two

complex numbers,  and  must satisfy the pair

−  = 1 +  = 0

of linear simultaneous equations; and simple computation yields the unique

solution

 =


2 + 2
  =

−
2 + 2



So the multiplicative inverse of  = ( ) is

−1 =
µ



2 + 2

−

2 + 2

¶
for  6= 0 (1.16)

The inverse −1 is not defined when  = 0. In fact,  = 0 means that 2+2 =

0; and this is not permitted in expression (1.16).
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1.4 Further properties

In this section, we mention a number of other algebraic properties of addi-

tion and multiplication of complex numbers that follow from the ones already

described. Inasmuch as such properties continue to be anticipated because

they also apply to real numbers, the reader can easily pass to Sec. 1.5 without

serious disruption.

We begin with the observation that the existence of multiplicative inverses

enables us to show that if a product 12 is zero, then so is at least one of

the factors 1 and 2. For suppose that 12 = 0 and 1 6= 0. The inverse −1
exists; and any complex number times zero is zero (Sec. 1.2). Hence

2 = 2·1 = 2(1
−1) = (−11)2 = −1(12) = −1·0 = 0

That is, if 12 = 0, either 1 = 0 or 2 = 0; or possibly both of the numbers

1 and 2 are zero. Another way to state this result is that if two complex

numbers 1 and 2 are nonzero, then so is their product 12.

Subtraction and division are defined in terms of additive and multiplicative

inverses:

1 − 2 = 1 + (−2) (1.17)

1

2
= 1

−1
2  where 2 6= 0 (1.18)

Thus, in view of expressions (1.15) and (1.16) in Sec. 1.3,

1 − 2 = (1 1) + (−2−2) = (1 − 2 1 − 2) (1.19)

and

1

2
= (1 1)

µ
2

22 + 22

−2

22 + 22

¶
(1.20)

=

µ
12 − 12

22 + 22

12 + 12

22 + 22

¶
if 2 6= 0

and when 1 = (1 1) and 2 = (2 2).

Using 1 = 1+ 1 and 2 = 2+ 2, one can write expressions (1.19) and

(1.20) here as

1 − 2 = (1 − 2) +  (1 − 2) (1.21)

and
1

2
=

12 − 12

22 + 22
+ 

12 + 12

22 + 22
if 2 6= 0 (1.22)
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Although expression (1.22) is not easy to remember, it can be obtained by

writing

1

2
=
(1 + 1) (2 − 2)

(2 + 2) (2 − 2)
 (1.23)

multiplying out the products in the numerator and denominator on the right,

and then using the property

1 + 2

3
= (1 + 2) 

−1
3 = 1

−1
3 + 2

−1
3 =

1

3
+

2

3
(3 6= 0) (1.24)

The motivation for starting with equation (1.23) appears in Sec. 1.6.

Example 1.1 The method is illustrated below:

4 + 

2− 3 =
(4 + ) (2 + 3)

(2− 3) (2 + 3) =
5 + 14

13
=
5

13
+
14

13


There are some expected properties involving quotients that follow from the

relation
1

2
= −12 (2 6= 0) (1.25)

which is equation (1.18) when 1 = 1. Relation (1.25) enables us, for instance,

to write equation (1.18) in the form

1

2
= 1

µ
1

2

¶
(2 6= 0) 

Also, by observing that (see Exercise ??)

(12)(
−1
1 −12 ) = (1

−1
1 )(2

−1
2 ) = 1 (1 6= 0 2 6= 0)

and hence that −11 −12 = (12)
−1, one can use relation (1.25) to show thatµ

1

1

¶µ
1

2

¶
= −11 −12 = (12)

−1 =
1

12
(1 6= 0 2 6= 0) (1.26)

Another useful property, to be derived in the exercises, isµ
1

3

¶µ
2

4

¶
=

12

34
(3 6= 0 4 6= 0) (1.27)
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Example 1.2 Computations such as the following are now justified:µ
1

2− 3
¶µ

1

1 + 

¶
=

1

(2− 3) (1 + )
=

1

5− 
· 5 + 

5 + 

=
5 + 

(5− ) (5 + )
=
5 + 

26
=
5

26
+



26

=
5

26
+
1

26


Finally, we note that the binomial formula involving real numbers remains

valid with complex numbers. That is, if 1 and 2 are any two nonzero complex

numbers, then

(1 + 2)
 =

X
=0

µ




¶
1

−
2 ( = 1 2  ) (1.28)

where µ




¶
=

!

!(− )!
( = 0 1 2  )

and where it is agreed that 0! = 1 The proof, by mathematical induction, is

the same as in the real case.

1.5 Vectors and moduli

It is natural to associate any nonzero complex number  =  +  with the

directed line segment, or vector, from the origin to the point ( ) that rep-

resents  in the complex plane. In fact, we often refer to  as the point or

the vector . In Fig. 1.2the numbers 1 = 1 + 2 and 2 = 3 +  are displayed

graphically as both points and radius vectors.

Generally, there are two geometric interpretations of the complex number

 = + :

1. as the point ( ) in the -plane,

2. as the vector from the origin to ( )

In each representation the -axis is called the real axis and the -axis is

called the imaginary axis. Both representations are Argand diagram for +

When 1 = 1 + 1 and 2 = 2 + 2, the sum

1 + 2 = (1 + 2) + (1 + 2)
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Fig. 1.2. The numbers 1 = 1 + 2 and 2 = 3 +  displayed graphically.

Fig. 1.3. Sum of two complex numbers obtained vectorially.
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corresponds to the point (1+2 1+2). It also corresponds to a vector with

those coordinates as its components. Hence 1+2 may be obtained vectorially

as shown in Fig. 1.3.

Although the product of two complex numbers 1 and 2 is itself a complex

number represented by a vector, that vector lies in the same plane as the

vectors for 1 and 2. Evidently, then, this product is neither the scalar nor

the vector product used in ordinary vector analysis2.

The vector interpretation of complex numbers is especially helpful in ex-

tending the concept of absolute values of real numbers to the complex plane.

The modulus, or absolute value, of a complex number  = +  is defined as

the nonnegative real number
p
2 + 2 and is denoted by ||; that is,

|| =
p
2 + 2 (1.29)

Geometrically, the number || is the distance between the point ( ) and
the origin, or the length of the radius vector representing . It reduces to

the usual absolute value in the real number system when  = 0. Note that

while the inequality 12 is meaningless unless both 1 and 2 are real, the

statement |1||2| means that the point 1 is closer to the origin than the
point 2 is.

Example 1.3 Since |1 + 2| = √5 and |3 + | = √10 we know that the point
1 = 1 + 2 is closer to the origin than 2 = 3 + 1 is. Here we were able to

establish this fact algebraically, without examining the Fig. 1.2.

The distance between two points (1 1) and (2 2) is |1 − 2|. This is
clear from Fig. 1.2, since |1 − 2| is the length of the vector representing the
number

1 − 2 = 1 + (−2);
and, by translating the radius vector 1−2, one can interpret 1−2 as the di-
rected line segment from the point (2 2) to the point (1 1). Alternatively,

it follows from the expression

1 − 2 = (1 − 2) + (1 − 2)

and definition (1.29) that

|1 − 2| =
p
(1 − 2)2 + (1 − 2)2

2These products will be defined later in this book.
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Fig. 1.4. Distance between two complex numbers.

The complex numbers  corresponding to the points lying on the circle

with center 0 and radius  thus satisfy the equation | − 0| = , and

conversely. We refer to this set of points simply as the circle | − 0| = 

or { : | − 0| = }.

Example 1.4 The equation |−1+3| = 2 represents the circle whose center
is 0 = (1−3) and whose radius is  = 2.

It also follows from definition (1.29) that the real numbers ||, Re  = ,

and Im  =  are related by the equation

||2 = (Re )2 + (Im )2  (1.30)

Thus

Re  ≤ |Re | ≤ || and Im  ≤ |Im | ≤ ||  (1.31)

We turn now to the triangle inequality , which provides an upper bound for

the modulus of the sum of two complex numbers 1 and 2

|1 + 2| ≤ |1|+ |2|  (1.32)

This important inequality is geometrically evident in Fig. 1.3, since it is

merely a statement that the length of one side of a triangle is less than or

equal to the sum of the lengths of the other two sides. We can also see from
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Fig. 1.3 that inequality (1.32) is actually an equality when 0, 1, and 2 are

collinear. Another, strictly algebraic, derivation is given below.

Proof. (Triangle inequality) Let 1 =  +  and 2 =  + . Then

0 ≤ (− )2 = 22 − 2+ 22 so

2 ≤ 22 + 22

22 + 2+ 22 ≤ 22 + 22 + 22 + 22

(+ )2 ≤ ¡2 + 2
¢ ¡
2 + 2

¢
2(+ ) ≤ 2

p
2 + 2

p
2 + 2

2 + 2+ 2 + 2 + 2+ 2 ≤ 2 + 2 + 2
p
2 + 2

p
2 + 2 + 2 + 2

(+ )2 + (+ )2 ≤
³p

2 + 2 +
p
2 + 2

´2
|1 + 2|2 ≤ (|1|+ |2|)2
|1 + 2| ≤ |1|+ |2|

An immediate consequence of the triangle inequality is the fact that

|1 + 2| ≥ ||1|− |2|| (1.33)

To derive inequality (1.33), we write

|1| = |(1 + 2) + (−2)| ≤ |1 + 2|+ |− 2|
which means that

|1 + 2| ≥ |1|− |2|  (1.34)

This is inequality (1.33) when |1| ≥ |2|. If |1||2|, we need only interchange
1 and 2 in inequality (1.34) to arrive at

|1 + 2| ≥ −(|1|− |2|)
which is the desired result. Inequality (1.33) tells us, of course, that the length

of one side of a triangle is greater than or equal to the difference of the lengths

of the other two sides.

Because |− 2| = |2|, one can replace 2 by −2 in inequalities (1.32) and
(1.33) to summarize these results in a particularly useful form:

|1 ± 2| ≤ |1|+ |2| (1.35)

|1 ± 2| ≥ |1|− |2|  (1.36)

When combined, inequalities (1.35) and (1.36) become

||1|− |2|| ≤ |1 ± 2| ≤ |1|+ |2|  (1.37)
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Example 1.5 If a point  lies on the unit circle || = 1 about the origin, it
follows from inequalities (1.35) and (1.36) that

| − 2| ≤ ||+ 2 = 3

and

| − 2| ≥ |||− 2| = 1
The triangle inequality (1.32) can be generalized by means of mathematical

induction to sums involving any finite number of terms:

|1 + 2 + · · ·+ | ≤ |1|+ |2|+ + || ( = 2 3 ) (1.38)

To give details of the induction proof here, we note that when  = 2,

inequality (1.38) is just inequality (1.32). Furthermore, if inequality (1.38)

is assumed to be valid when  = , it must also hold when  = + 1 since,

by inequality (1.32),

|(1 + 2 + ···+ ) + +1| ≤ |1 + 2 + ···+ |+ |+1|
≤ (|1|+ |2|+ ···+ ||) + |+1|

1.6 Complex conjugates

The complex conjugate, or simply the conjugate, of a complex number  =

+  is defined as the complex number −  and is denoted by ̄ ; that is,

̄ = −  (1.39)

The number ̄ is represented by the point (−), which is the reflection in
the real axis of the point ( ) representing  (Fig. 1.5). Note that

(̄) =  and |̄| = ||

for all .

If 1 = 1 + 1 and 2 = 2 + 2, then

1 + 2 = (1 + 2)− (1 + 2) = (1 − 1) + (2 − 2)

So the conjugate of the sum is the sum of the conjugates:

1 + 2 = ̄1 + ̄2 (1.40)
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Fig. 1.5. The conjugate of a complex number  = + 

In like manner, it is easy to show that

1 − 2 = ̄1 − ̄2 (1.41)

12 = ̄1̄2 (1.42)

and µ
1

2

¶
=

̄1

̄2
 (1.43)

The sum  + ̄ of a complex number =  +  and its conjugate  =  − 

is the real number 2, and the difference  − ̄ is the pure imaginary number

2. Hence

Re  =
 + ̄

2
and Im  =

 − ̄

2
 (1.44)

An important identity relating the conjugate of a complex number  = + 

to its modulus is

̄ = ||2 (1.45)

where each side is equal to 2 + 2. It suggests the method for determining a

quotient 12 that begins with expression (1.22), Sec. 1.4. That method is,

of course, based on multiplying both the numerator and the denominator of

12 by ̄2, so that the denominator becomes the real number |2|2.
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Example 1.6 As an illustration,

−1 + 3
2− 

=
(−1 + 3) (2 + )

(2− ) (2 + )
=
−5 + 5
|2− |2 = −1 + 

See also the example in Sec. 1.4.

Identity (1.45) is especially useful in obtaining properties of moduli from

properties of conjugates noted above. We mention that

|12| = |1| |2| (1.46)

and ¯̄̄̄
1

2

¯̄̄̄
=
|1|
|2| (2 6= 0) (1.47)

Property (1.46) can be established by writing

|12|2 = (12)(12) = (12)(̄1̄2) = (1̄1)(2̄2) = |1|2|2|2 = (|1||2|)2

and recalling that a modulus is never negative. Property (1.47) can be verified

in a similar way.

Example 1.7 Property (1.46) tells us that |2| = ||2 and |3| = ||3. Hence
if  is a point inside the circle centered at the origin with radius 2, so that

||  2, it follows from the generalized triangle inequality (1.38) in Sec. 1.5

that

|3 + 32 − 2 + 1| ≤ ||3 + 3||2 + 2||+ 1  25
Remark 1.8 We have seen that the triangle inequality |1+2| ≤ |1|+|2| in-
dicates that the length of the vector 1+2 cannot exceed the sum of the lengths

of the individual vectors 1 and 2.But the results given in (1.46 and 1.47) are

interesting.The product 12 and quotient 12, (2 6= 0), are complex num-
bers and so are vectors in the complex plane.The equalities |12| = |1||2| and
|12| = |1||2| indicate that the lengths of the vectors 12 and 12 are

exactly equal to the product of the lengths and to the quotient of the lengths,

respectively, of the individual vectors 1 and 2.

Example 1.9 (An upper bound) Find an upper bound for

¯̄̄̄ −1
4 − 5 + 1

¯̄̄̄
if

|| = 2
Solution: By the previous result, the absolute value of a quotient is the

quotient of the absolute values.Th us with |−1| = 1, we want to find a positive
real number  such that

1

|4 − 5 + 1| ≤
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To accomplish this task we want the denominator as small as possible.By

(1.33) we can write¯̄
4 − (5 + 1)

¯̄
≥

¯̄¯̄
4
¯̄
− |5 + 1|

¯̄
≥
¯̄¯̄
4
¯̄
− (5 ||+ 1)

¯̄
=

¯̄¯̄
4
¯̄
− 5 ||− 1

¯̄
= |16− 10− 1| = 5

Hence for || = 2 we have ¯̄̄̄ −1
4 − 5 + 1

¯̄̄̄
≤ 1
5
 ¤

1.7 Polar coordinate system

So far, you have been representing graphs of equations as collections of points

on the rectangular coordinate system, where and represent the directed dis-

tances from the coordinate axes to the point. In this section, we introduce a

new system for assigning coordinates to points in the plane polar coordinates.

We start with an origin point, called the pole, and a ray called the polar axis.

We then locate a point  using two coordinates, (; ), where  represents a

directed distance3 from the pole and is a measure of rotation from the polar

axis (see Fig. 1.6). Roughly speaking, the polar coordinates (; ) of a point

measure ‘how far out’ the point is from the pole (that’s ), and ‘how far to

rotate’ from the polar axis, (that’s ). For example, if we wished to plot the

point  with polar coordinates (4 5
6
), we’d start at the pole, move out along

the polar axis 4 units, then rotate 5
6
radians counter-clockwise.

The standard table of cosine and sine values can be used to generate the

following figure (1.7), which should be committed to memory and will be useful

next. In rectangular coordinates, each point has a unique representation.

This is not true for polar coordinates. For instance, the coordinates (; )

and (;  + 2) represent the same point. Another way to obtain multiple

representations of a point is to use negative values for  If   0, we begin by

moving in the opposite direction on the polar axis from the pole. As you may

have guessed,   0 means the rotation away from the polar axis is clockwise

instead of counter-clockwise. Because  is a directed distance, the coordinates

(; ) and (−;  + ) represent the same point. In general, the point can be

represented as

(; ) = (;  ± 2) or (; ) = (−;  ± (2+ 1))
3We will explain more about this momentarily.
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Fig. 1.6. Cartesian and polar coordinates.

Fig. 1.7. Important points on the unit circle
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where  is any integer. Moreover, the pole is represented by (0 ) where  is

any angle.

Example 1.10 The point (3−34) has three additional polar representation
with −2    2¡

3−3
4
+ 2

¢
=

¡
3 5

4

¢
Add 2 to ¡−3−3

4
− 

¢
=

¡−3−7
4

¢
Replace  by − , subtract  from ¡−3−3

4
+ 

¢
=

¡−3 
4

¢
Replace  by − , add  to 

Next, we marry the polar coordinate system with the Cartesian (rectangu-

lar) coordinate system. To do so, we identify the pole and polar axis in the

polar system to the origin and positive x-axis, respectively, in the rectangular

system. We get the following result.

Theorem 1.11 (Conversion Between Rectangular and Polar Coordinates): Sup-

pose  is represented in rectangular coordinates as (; ) and in polar coordi-

nates as ( ). Then

• Polar-to-Rectangular:  =  cos() and  =  sin()

• Rectangular-to-Polar: 2 + 2 = 2 and tan() = 

(provided  6= 0).

Proof. We know from elementary trigonometry, that if (; ) is the point

on the terminal side of an angle, plotted in standard position, which lies on

the circle 2 + 2 = 2 then  = cos() and  =  sin(). In the case   0

theorem (1.11) is an immediate consequence of this observation along with the

quotient identity tan() = sin() cos()If   0, then we know an alternate

representation for (; ) is (−; +). Since cos(+) = − cos() and sin(+
) = − sin(), applying the theorem to (−;  + ) gives

 = (−) cos( + ) = (−)(−()) = ()

and

 = (−) sin( + ) = (−)(− sin()) =  sin()

Moreover, 2 + 2 = (−)2 = 2, and  = tan( + ) = tan(), so the

theorem is true in this case, too. The remaining case is  = 0, in which case

(; ) = (0; ) is the pole. Since the pole is identified with the origin (0; 0) in

rectangular coordinates, the theorem in this case amounts to checking ‘0 = 0’

The following example puts Theorem 1.11 to good use.
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Example 1.12 Convert each point in rectangular coordinates given below into

polar coordinates with  ≥ 0 and 0 ≤   2. Use exact values if possible and

round any approximate values to two decimal places. Check your answer by

converting them back to rectangular coordinates.

1  (2−2√3) 2 (−3−3) 3 (0−3) 4 (−3 4)

Solution:

1. Even though we are not explicitly told to do so, we can avoid many common

mistakes by taking the time to plot the points before we do any calcu-

lations. Plotting  (2−2√3) shows that it lies in Quadrant  . With
 = 2 and  = −2√3, we get 2 = 2+2 = (2)2+

¡−2√3¢2 = 4+12 = 16
so  = ±4 Since we are asked for  ≥ 0, we choose  = 4. To find , we

have that

tan() =



=
−2√3
2

= −
√
3

This tells us  has a reference angle of 
3
and since  lies in Quadrant

 , we know  is a Quadrant  angle. We are asked to have 0 ≤   2,

so we choose  = 5
3
 Hence, our answer is

¡
4 5

3

¢
To check, we convert

(; ) =
¡
4 5

3

¢
back to rectangular coordinates and we find

 =  cos() = 4 sin

µ
5

3

¶
= 4

Ã
−√3
2

!
= −2

√
3

as required.

2. The point (−3−3) lies in Quadrant . Using  =  = −3, we get
2 = (−3)2 + (−3)2 = 18 so  = ±√18 = ±3√2 Since we are asked for
 ≥ 0, we choose  = 3√2 We find tan()= −3

−3 = 1 which means  has
a reference angle of 

4
 Since  lies in Quadrant , we choose  = 5

4


which satisfies the requirement that 0 ≤   2. Our final answer is

(; ) = (3
√
2 5

4
) To check, we find

 =  cos() = 3
√
2 cos(

5

4
) = 3

√
2

Ã
−
√
2

2

!
= −3

and

 =  sin() = 3
√
2 sin(

5

4
) = 3

√
2

Ã
−
√
2

2

!
= −3

so we are done.
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3. The point (0−3) lies along the negative -axis. While we could go

through the usual computations to find the polar form of , in this

case we can find the polar coordinates of  using the definition. Since

the pole is identified with the origin, we can easily tell the point  is 3

units from the pole, which means in the polar representation (; ) of 

we know  = ±3. Since we require  ≥ 0, we choose  = 3. Concerning
, the angle  = 3

2
satisfies 0 ≤   2 with its terminal side along the

negative -axis, so our answer is
¡
3 3

2

¢
 To check, we note

 =  cos() = 3 cos(
3

2
) = (3)(0) = 0

and

 =  sin() = 3 sin(
3

2
) = 3(−1) = −3

4. The point4 (−3 4) lies in Quadrant . With  = −3 and  = 4, we get

2 = (−3)2 + (4)2 = 25 so  = ±5. As usual, we choose  = 5 ≥ 0 and
proceed to determine . We have

tan() =



=

4

−3 = −
4

3


and since this isn’t the tangent of one the common angles, we resort

to using the arctangent function. Since  lies in Quadrant  and must

satisfy 0 ≤   2, we choose  =  − arctan ¡4
3

¢
radians. Hence, our

answer is (; ) =
¡
5  − arctan ¡4

3

¢¢ ' (5 221). To check our answers
requires a bit of tenacity since we need to simplify expressions of the

form:

cos

µ
 − arctan

µ
4

3

¶¶
and sin

µ
 − arctan

µ
4

3

¶¶


These are good review exercises and are hence left to the reader. We find

cos

µ
 − arctan

µ
4

3

¶¶
= −3

5
and sin

µ
 − arctan

µ
4

3

¶¶
=
4

5

so that

 =  cos() = (5)(
−3
5
) = −3

and

 =  sin() = (5)(
4

5
) = 4

which confirms our answer. ¤
4 Skip this example if you are not familiar with the Inverse Trig Functions.
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1.8 Exponential form

Let  and  be polar coordinates of the point ( ) that corresponds to a

nonzero complex number  =  + . Since  =  cos  and  =  sin , the

number  can be written in polar form as

 = (cos  +  sin ) (1.48)

If  = 0, the coordinate  is undefined; and so it is understood that  6= 0

whenever polar coordinates are used.

In complex analysis, the real number  is not allowed to be negative and

is the length of the radius vector for  ; that is,  = ||. The real number 
represents the angle, measured in radians, that  makes with the positive real

axis when  is interpreted as a radius vector (Fig. 1.8). As in calculus,  has

an infinite number of possible values, including negative ones, that differ by

integral multiples of 2 . Those values can be determined from the equation

tan  = , where the quadrant containing the point corresponding to  must

be specified. Each value of  is called an argument of , and the set of all such

values is denoted by arg . The principal value of arg , denoted by Arg , is

that unique value  such that −   ≤ . Evidently, then,

arg  = Arg  + 2 ( = 0±1±2 ) (1.49)

Also, when  is a negative real number, Arg  has value  , not − .

Example 1.13 The complex number −1− , which lies in the third quadrant,

has principal argument −34. That is,

3Arg(−1− ) = −3
4


It must be emphasized that because of the restriction −   ≤  of the

principal argument , it is not true that Arg(−1 − ) = 54. According to

equation (1.49), arg(−1− ) = −3
4
+ 2 ( = 0±1±2 )

Note that the term Arg  on the right-hand side of equation (1.49) can be

replaced by any particular value of arg  and that one can write, for instance,

arg(−1− ) =
5

4
+ 2 ( = 0±1±2 )

The symbol  , or exp(), is defined by means of Euler’s formula as

 = cos  +  sin  (1.50)
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Fig. 1.8. Polar coordinates ( ) versus rectangular coordinates ( )

where  is to be measured in radians. It enables one to write the polar form

(1.48) more compactly in exponential form as

 =  (1.51)

The choice of the symbol  will be fully motivated later on.

Example 1.14 The number −1−  in Example 1.13 has exponential form

−1−  =
√
2 exp

∙


µ
−3
4

¶¸
 (1.52)

With the agreement that − = (−), this can also be written −1 −  =√
2−34. Expression (1.52) is, of course, only one of an infinite number of

possibilities for the exponential form of −1− :

( = 0±1±2 ) (1.53)

Note how expression (1.51) with  = 1 tells us that the numbers  lie on

the circle centered at the origin with radius unity, as shown in Fig 1.9.

It is, for instance, geometrically obvious (without reference to Euler’s for-

mula) that

 = −1 −2 = − and −4 = 1
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Fig. 1.9. The numbers  lie on the circle centered at the origin with radius unity.

Additionally, from Euler’s formula we have

− = cos (−) +  sin (−) = cos ()−  sin ()

which together with (1.50) gives

cos  =
 + −

2
and sin  =

 − −

2
 (1.54)

Note, too, that the equation

 =  (0 ≤  ≤ 2) (1.55)

is a parametric representation of the circle || = , centered at the origin with

radius . As the parameter  increases from  = 0 to = 2 , the point  starts

from the positive real axis and traverses the circle once in the counterclockwise

direction. More generally, the circle |−0| = , whose center is 0 and whose

radius is , has the parametric representation

 = 0 + (0 ≤  ≤ 2) (1.56)

This can be seen vectorially by noting that a point  traversing the circle

| − 0| =  once in the counterclockwise direction corresponds to the sum of

the fixed vector 0 and a vector of length  whose angle of inclination  varies

from  = 0 to  = 2.
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Fig. 1.10. Pictorial presentation of the equalities 1.54.

1.9 Products and powers in exponential form

Simple trigonometry tells us that  has the familiar additive property of the

exponential function in calculus:

12 = (cos 1 +  sin 1)(cos 2 +  sin 2)

= (cos 1 cos 2 − sin 1 sin 2) + (sin 1 cos 2 + cos 1 sin 2)

= cos(1 + 2) +  sin(1 + 2) = (1+2)

Thus, if 1 = 1
1 and 2 = 2

2 , the product 12 has exponential form

12 = 1
12

2 = 12
12 = (12)

(1+2) (1.57)

Furthermore,

1

2
=

1
1

22
=

1

2

1−2

2−2
= (

1

2
)(1−2) (2 6= 0) (1.58)

Note how it follows from expression (1.58) that the inverse of any nonzero

complex number  =  is

−1 =
1


=
1



0


=
1


(0−) =

1


− (1.59)

Expressions (1.57), (1.58), and (1.59) are, of course, easily remembered by

applying the usual algebraic rules for real numbers and . Another important

result that can be obtained formally by applying rules for real numbers to

 =  is

 =  ( = 0±1±2 ) (1.60)
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It is easily verified for positive values of  by mathematical induction. To

be specific, we first note that it becomes  =  when  = 1. Next, we

assume that it is valid when  = , where  is any positive integer. In

view of expression (1.57) for the product of two nonzero complex numbers in

exponential form, it is then valid for  = + 1:

+1 =  =  = ()(+) = +1(+1)

Expression (??) is thus verified when  is a positive integer. It also holds when

 = 0, with the convention that 0 = 1. If  = −1−2  on the other hand,
we define  in terms of the multiplicative inverse of  by writing

 = (−1) where  = − = 1 2 
Then, since equation (1.60) is valid for positive integers, it follows from the

exponential form (1.59) of −1 that

 =

∙
1


(−)

¸
=

µ
1



¶

(−) =
µ
1



¶−
(−)(−) = 

for  = −1−2 . Expression (1.60) is now established for all integral powers.
Expression (1.60) can be useful in finding powers of complex numbers even

when they are given in rectangular form and the result is desired in that form.

In order to put (
√
3 + 1)7 in rectangular form, one need only write

(
√
3 + )7 = (26)7 = 2776 = (26)(26) = −64(

√
3 + )

Finally, we observe that if  = 1, equation (1.60) becomes

() =  ( = 0±1±2 ) (1.61)

When written in the form

(cos  +  sin ) = cos +  sin ( = 0±1±2 ) (1.62)

this is known as de Moivre’s formula. The following example uses a special

case of it.

Example 1.15 Formula (1.62) with  = 2 tells us that

(cos  +  sin )2 = cos 2 +  sin 2

or

cos2  − sin2  + 2 sin  cos  = cos 2 +  sin 2

By equating real parts and then imaginary parts here, we have the familiar

trigonometric identities
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cos 2 = cos2  − sin2  sin 2 = 2 sin  cos 

1.10 Arguments of products and quotiens

If 1 = 1
1 and 2 = 2

2 , the expression (1.57)

12 = (12)
(1+2) (1.63)

in Sec. 1.9 can be used to obtain an important identity involving arguments:

arg(12) = arg 1 + arg 2 (1.64)

This result is to be interpreted as saying that if values of two of the three

(multiple-valued) arguments are specified, then there is a value of the third

such that the equation holds.

We start the verification of statement (1.64) by letting 1 and 2 denote any

values of arg 1 and arg 2, respectively. Expression (1.63) then tells us that

1 + 2 is a value of arg(12). (See Fig. 1.11.) If, on the other hand, values

of arg(12) and arg 1 are specified, those values correspond to particular

choices of  and 1 in the expressions

arg(12) = (1 + 2) + 2 ( = 0±1±2 )

and

arg 1 = 1 + 21 (1 = 0±1±2 )
Since

(1 + 2) + 2 = (1 + 21) + [2 + 2(− 1)]

equation (1.64) is evidently satisfied when the value

arg 2 = 2 + 2(− 1)

is chosen. Verification when values of arg(12) and arg 2 are specified follows

by symmetry.

Statement (1.64) is sometimes valid when arg is replaced everywhere by Arg

. But, as the following example illustrates, that is not always the case.

Example 1.16 When 1 = −1 and 2 = ,

Arg(12) = Arg(−) = −
2

but Arg 1 +Arg 2 =  +


2
=
3

2
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If, however, we take the values of arg 1 and arg 2 just used and select the

value

Arg(12) + 2 = −
2
+ 2 =

3

2

of arg(12), we find that equation (1.64) is satisfied. ¤

Statement (1.64) tells us that

arg(
1

2
) = arg(1

−1
2 ) = arg(1) + arg(

−1
2 );

and, since (Sec. 1.9)

−12 =
1

2
−2

one can see that

arg(−12 ) = − arg(2) (1.65)

Hence (see Fig. 1.12.)

arg(
1

2
) = arg(1)− arg(2) (1.66)

Statement (1.65) is, of course, to be interpreted as saying that the set of all

values on the left-hand side is the same as the set of all values on the right-

hand side. Statement (1.66) is, then, to be interpreted in the same way that

statement (1.64) is.

Example 1.17 In order to find the principal argument Arg  when

 =
−2

1 +
√
3

observe that

arg  = arg(−2)− arg(1 +
√
3)

Since

Arg(−2) =  and Arg(1 +
√
3) =



3

one value of arg  is 23; and, because 23 is between − and  , we find that
Arg  = 23. When 1 and 2 are multiplied |12| = 12 and arg(12) =

1 + 2

Example 1.18 Use polar forms of the complex numbers

1 = 1 +
√
3 and 2 =

√
3 + 

to compute 12 = and 12
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Fig. 1.11. Visualization of products. When 1 and 2 are multiplied |12| = 12 and

arg(12) = 1 + 2

Fig. 1.12. Visualization of quotients. We divide lengths and subtract angles for the

quotines of complex numbers 1 and 2 so
¯̄̄
1
2

¯̄̄
= 1

2
and arg( 1

2
) = 1 − 2
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Solution: Polar forms of these complex numbers are

1 = 2
³
cos



3
+  sin



3

´
and 2 = 2

³
cos



6
+  sin



6

´
(verify). Thus, it follows from (1.63) that

12 = 4
h
cos
³
3
+



6

´
+  sin

³
3
+



6

´i
= 4

h
cos



2
+  sin



2

i
= 4

and from (1.66)

1

2
= 1

h
cos
³
3
− 

6

´
+  sin

³
3
− 

6

´i
= cos

³
6

´
+  sin

³
6

´
=

√
3

2
+
1

2


As a check we can calculate 12 = and 12 directly

12 =
³√
3 + 

´³

√
3 + 1

´
=
√
3 + + 3+

√
32 = 4

1

2
=

¡
1 + 

√
3
¢

√
3 + 

=

¡
1 + 

√
3
¢ ¡√

3− 
¢¡√

3 + 
¢ ¡√

3− 
¢ = √3− + 3−√32

3− 2
=

√
3

2
+
1

2


which agrees with the results obtained using polar forms. ¤

1.11 Roots of complex numbers

Consider now a point  = , lying on a circle centered at the origin with

radius  (see Fig. 1.13).

As  is increased,  moves around the circle in the counterclockwise direction.

In particular, when  is increased by 2, we arrive at the original point; and

the same is true when  is decreased by 2 . It is, therefore, evident from (Fig.

1.13) that two nonzero complex numbers

1 = 1
1 and 2 = 2

2

are equal if and only if

1 = 2 and 1 = 2 + 2

where  is some integer ( = 0±1±2 ).
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Fig. 1.13. A point  = , lying on a circle centered at the origin with radius .

This observation, together with the expression  =  in Sec. 1.9 for

integral powers of complex numbers  = , is useful in finding the -th

roots of any nonzero complex number 0 = 0
0 , where  has one of the

values  = 2 3  The method starts with the fact that an −th root of 0 is
a nonzero number  =  such that  = 0, or

 = 0
0 

According to the statement in italics just above, then,

 = 0 and  = 0 + 2

where k is any integer( = 0±1±2 ) So  = 
√
0, where this radical

denotes the unique positive −th root of the positive real number 0, and

 =
0 + 2


=

0


+
2


( = 0±1±2 )

Consequently, the complex numbers

 = 
√
0 exp

∙


µ
0


+
2



¶¸
( = 0±1±2 )

are the −th roots of 0. We are able to see immediately from this exponential
form of the roots that they all lie on the circle ||= √ 0 about the origin and
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Fig. 1.14. Roots of unity ( = 8).

are equally spaced every 2 radians, starting with argument 0 Evidently,

then, all of the distinct roots are obtained when  = 0 1 2   − 1 and no
further roots arise with other values of . We let  ( = 0 1 2   − 1)
denote these distinct roots?? and write

 =

√
0 exp

∙


µ
0


+
2



¶¸
( = 0 1 2  − 1) (1.67)

The number 
√
0 is the length of each of the radius vectors representing the

 roots. The first root 0 has argument 0; and the two roots when  = 2

lie at the opposite ends of a diameter of the circle { : || = 
√
0}, the second

root being −0. When  ≥ 3, the roots lie at the vertices of a regular polygon
of  sides inscribed in that circle (see Fig. ??). We shall let 

1
0 denote the

set of -th roots of 0. If, in particular, 0 is a positive real number 0, the

symbol 
1
0 denotes the entire set of roots; and the symbol 

√
0 in expression

(1.67) is reserved for the one positive root. When the value of 0 that is used

in expression (??) is the principal value of arg 0 (−  0 ≤ ), the number

0 is referred to as the principal root. Thus when 0 is a positive real number

0, its principal root is 
√
0.
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Observe that if we write expression (??) for the roots of 0 as

 =

√
0 exp

∙


µ
0


+
2



¶¸
( = 0 1 2  − 1)

and also write

 = exp

µ

2



¶
(1.68)

it follows from property (??), Sec. 1.9.) of  that

 = exp

µ

2



¶
( = 0 1 2  − 1) (1.69)

and hence that

 = 0

 ( = 0 1 2  − 1) (1.70)

The number 0 here can, of course, be replaced by any particular -th root

of 0, since  represents a counterclockwise rotation through 2 radians.

Finally, a convenient way to remember expression (1.67) is to write 0 in its

most general exponential form

0 = 0
(0+2) ( = 0±1±2 )

and to formally apply laws of fractional exponents involving real numbers,

keeping in mind that there are precisely  roots:


1
0 =

h
0

(0+2)
i1

= 
√
0 exp

∙


µ
0


+
2



¶¸
( = 0 1 2  − 1)

The examples in the next section serve to illustrate this method for finding

roots of complex numbers.

For a positive integer , the complex numbers  from (1.69) i.e.

{1  2  −1 }

are called the -th roots of unity because they represent all solutions to  = 1.

Geometrically, they are the vertices of a regular polygon of  sides as depicted

in Figure (??) for  = 12The roots of unity are cyclic in the sense that if

 ≥ , then  = (mod), where (mod) denotes the remainder when

 is divided by —for example, when  = 6 66 = 1 76 = 6 
8
6 = 26

96 = 36 
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Example 1.19 The three cube roots of 1 = cos 0 +  sin 0 are

cos
0

3
+  sin

0

3
= 1

cos
2

3
+  sin

2

3
= −1

2
+
1

2

√
3

cos
4

3
+  sin

4

3
= −1

2
− 1
2

√
3

which correspond to taking  = 0 1 and 2 in (1.69).¤

Example 1.20 We solve the equation 6 = −1 to find the 6th roots of −1.
Writing  = , we have

6 = ()6 = 66

and

−1 =  = (+2) for  ∈ Z

So we need to solve

66 = (+2)

Using the fact that  is a real positive number, we have  = 1 and 6 = +2

so

 =


6
+
2

6


This will give the six distinct complex roots by taking  = 0 1 2 3 4 5 ¤

Example 1.21 Show that all roots of ( + 1)5 + 5 = 0 lie on line  = −1
2


Solution: Each root of this equation is of course different from zero. Di-

viding both sides of the equation by 5 we have an equivalent relation

1 +

µ
1 +

1



¶5
= 0

Therefore

1 +
1


= (+2)5  = 0 4;

and thus

−1 = −1 + (+2)5
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Designating  = (+2)5 we can write (for each of the allowed value of )

−1 = cos  +  sin  − 1
= −2 sin2 

2
+ 2 sin



2
cos



2

= −2 sin 
2

∙
sin



2
−  cos



2

¸
= −2 sin 

2

∙
cos

µ


2
− 

2

¶
−  sin

µ


2
− 

2

¶¸


Thus

−1 = −2 sin 
2
−(


2
− 
2)

and

 =
1

−2 sin 
2

∙
cos

µ


2
− 

2

¶
+  sin

µ


2
− 

2

¶¸


Hence

Re() = − 1

−2 sin 
2

sin


2
= −1

2
for  = 0 4

NOTE: It is not good enough to just say

(1 + )5 = −5

hence

1 +  = − 2 = −1  = −1
2


This only shows that  = (−12 0) is one root.
¤

1.12 Summing trigonometric series

Below are two different series. Which is it easier to sum?

1 = 1 + cos  + cos 2 + cos 3 + + cos (1.71)

2 = 1 + cos  + cos
2  + cos3  + + cos  (1.72)

The answer is that 2 is simply a geometric series, whose sum can be written

down immediately as

2 =
1− cos+1 
1− cos   (1.73)
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The first looks more complicated. However, we remember that de Moivre’s

formula (1.62, p. 34) gives us a recipe for converting the sines and cosine-

sof multiple angles (like 3) to the corresponding powers. Thus the problem

of summing 1 would have been easier if it had been coupled with that of

summing

1 = sin  + sin 2 + sin 3 + + sin (1.74)

since in that case we can multiply 1 by  and add it to 1 to obtain

1 + 1

= 1 + ( +  sin ) + (cos 2 +  sin 2) + + (cos +  sin)

= 1 +  + 2 + + 

where  = cos  +  sin  6= 1 , and we have made use of de Moivre’s formula.
Thus we have obtained 1 + 1 as a geometric series which we can sum to

give

1 + 1 (1.75)

=
1− +1

1− 

=
(1− (+1))

(1− )

=
(+1)2 sin [(+ 1)2]

2 sin (2)

where we have used de Moivre’s formula along with formulas (1.54) to con-

clude, that for an arbitraty 

1−  = 2−2 − 22

= 22
¡
2 − −2

¢
2

= 22 sin(2)

Next this relationship was applied to the numerator and denominator in (1.75),

together with the natural simplification (2 cancels).

Finally we extract 1 and 1 by comparing the real and the imaginary parts

of equation (1.75) and obtain

1 = cos(2) sin[(+ 1)2] sin (2) ( 6= 2) (1.76)
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and

1 = sin(2) sin[(+ 1)2] sin (2) ( 6= 2) (1.77)

Thus what is needed is the imagination to see that, if we are presented with the

series 1, which involves only real terms, we can make it easier by inventing

the series 1 and turning the problem into one containing complex numbers.

In our series for 1 above, the coefficients of the various terms cos  were all

unity. If the coefficients instead are some simple function of , we may still be

able to add up the series for , and hence solve the problem. An example of

this type appears in Problem (??)

1.13 Roots of polynomials

As it was mentioned earlier The Fundamental Theorem of Algebra asserts that

a polynomial of degree  with complex coefficients has  complex roots (not

necessarily distinct), and can therefore be factorised into  linear factors. If

the coefficients are restricted to real numbers, the polynomial can be factorised

into a product of linear and irreducible quadratic factors over R and into a
product of linear factors over C. However, we note the following useful result:

Theorem 1.22 Complex roots of polynomials with real coefficients appear in

conjugate pairs.

Proof. Let  () = 0 + 1+···+,  ∈ R, be a polynomial of degree .
We shall show that if  is a root of  (), then so is ̄.

Let  be a complex number such that  () = 0, then

0 + 1 + 2
2···+ 

 = 0

Conjugating both sides of this equation, we get

0 + 1 + 22···+  = 0̄

Since 0 is a real number, it is equal to its complex conjugate. We now use the

following properties of the complex conjugate: that the complex conjugate of

the sum is the sum of the conjugates, and the complex conjugate of a product

is the product of the conjugates.We have

̄0 + 1 + 22···+  = 0

and

̄0 + ̄1̄ + ̄2̄
2···+ ̄̄

 = 0
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Since the coefficients ai are real numbers, this becomes

0 + 1̄ + 2̄
2···+ ̄

 = 0

That is,  (̄) = 0, so the number  is also a root of  ().

The fact that every complex number has a square root is easily seen from

the polar form:
√
(2) is a square root of . From this we may deduce

that every quadratic equation

2 +  +  = 0

where    ∈ C and  6= 0 has a solution in C. The procedure, by "completing
the square", and the resulting formula

 =
−±√2 − 4

2

are just the same as for real quadratic equations.

Example 1.23 Find the roots of the equation

2 + 2 + (2− 4) = 0

Solution: By the standard formula, the solution of the equation is

1

2

µ
−2±

q
(−2)2 − 4(2− 4)

¶
=

1

2

³
−2±

p
(−12 + 16)

´
= −±√−3 + 4

Observe now that (1+2)2 = −3+4, and so the solution is  = −±(1+2) =
1 +  or −1− 3 Note that this time the roots do not appear in conjugate
pair as the coefficients of our polynomial were not real. ¤

Example 1.24 Let us consider the polynomial

3 − 22 − 2− 3 = (− 3)(2 + + 1)

If

 = −1
2
+ 

√
3

2

then

3 − 22 − 2− 3 = (− 3)(− )(− ̄)
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¤

Example 1.25 Find all the roots of the equation 4 +1 = 0. Factorize the

polynomial in C, and also in R.

Solution: 4 = −1 =  if and only if  =  ± 4 or ±34. The roots
all lie on the unit circle, and are equally spaced . In C the factorizations is

= ( −  4)( −  −4)( − 34)( − −34)

Combining conjugate factors, we obtain the factorizations in R:

4 + 1 = (2 − 2 cos(4) + 1)(2 − 2 cos(34) + 1)
= (2 −

√
2 + 1)(2 +

√
2 + 1)

¤

 := 2  = (0 1  − 1)

1.14 Complex Numbers and Geometry

Several features of complex numbers make them extremely useful in plane

geometry. For example, probably one of the more popular “math facts” that

the central angle in a circle is twice the inscribed angle subtended by the

same arc can be easily proved with complex numbers. The original formulation

comes from Euclid:

In a circle the angle at the center is double the angle at the circumference

when the angles have the same circumference as base.

An important corollary of this fact is that, in a circle, all inscribed angles

subtended by the same arc are equal. The proof is based on the following Fig.

(1.15).

Without loss of generality, the circle is assumed to have radius 1 and be

centered at the origin. The points are identified with complex numbers, so

that, say, the equation of the circle is  =  where  is a real number, the

angle measured from the horizontal -axis. Let  correspond to  = 0  to

 =  and  to  =  Thus,  = 1  =  ,  = . We find, for vectors,

 =  − 

 =  − 1
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Fig. 1.15. Central angle in a circle is twice the inscribed angle subtended by the same

arc.

The argument of the ratio of this two complex numbers is∠ = Dividing

the ratio by its conjugate eliminates the unimportant length of the ratio, but

doubles the argument. Thus we have

2 =
 − 

 − 1 :
− − −

− − 1
=

 − 

 − 1 · − − 1
− − −

=
 − 

 − 1 · 

¡
1− −

¢
 = 

= 

Assuming all angles are between 0 and  2 = 

1.15 Fractals

With computers, we can generate beautiful art from complex numbers. These

designs, some of which you can see on this page, are called fractals. Fractals

are produced using an iteration process. This is where we start with a number

and then feed it into a formula. We get a result and feed this result back into

the formula, getting another result. And so on and so on...Fractals start with a
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Fig. 1.16. Exemplary fractal.

complex number. Each complex number produced gives a value for each pixel

on the screen. The higher the number of iterations, the better the quality of

the image.

Common fractals are based on the Julia Set and the Mandelbrot Set. The

Julia Set equation is:

+1 = ()
2 + 

For the Julia Set, the value of  remains constant and the value of  changes.

If we start with the complex number

1 = 05 + 06

and let  = 03 and then feed this into the formula above, we have:

2 = (05 + 06)
2 + 03 = 019 + 06

We now take this new answer and feed it back in:

3 = (019 + 06)
2 + 03 = −00239 + 0228

Continuing, we find that

4 = 024858721− 00108984
and

5 = 03616768258− 0005418405698
The Mandelbrot Set (discovered accidentally by an IBM computer program-

mer of that name) is the same as the Julia Set, but the value of  is allowed

to change.
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Fig. 1.17. Fractal fern.

Another famous example is the "fractal fern" (see Fig. 1.17). This is not a

digital photograph - it is completely computer-generated by fractals.

Much solid and fascinating mathematics is involved in a proper study of

fractals, but this is well beyond the scope of an introductory book5.

Is There a Use for Any of This? Yes! For example US company called Frac-

tal Antenna Systems, Inc. makes antenna arrays that use fractal shapes to get

superior performance characteristics, because they can be packed so close to-

gether. More details can be found at: http://www.spacedaily.com/news/antenna-

02d.html

5For a mathematical account of fractal sets, including Julia sets and the Mandelbrot set, see

Kenneth Falconer, Fractal Geometry: Mathematical Foundations and Applications, 2nd Edition,

Wiley, 2003.
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Systems of Linear Equations

A linear equation:

11 + 22 + · · ·+  = 

Example 2.1

• Linear:
41 − 52 + 2 = 1 and 2 = 2(

√
6− 1) + 3

↓ ↓
rearranged rearranged

↓ ↓
31 − 52 = −2 21 + 2 − 3 = 2

√
6

• Not linear:

41 − 62 = 12  2 = 2
√
1 − 7

A system of linear equations (or a linear system):

A collection of one or more linear equations involving the same set of vari-

ables, say, 1 2  

A solution of a linear system:

A list (1 2  ) of numbers that makes each equation in the system true

when the values 1 2   are substituted for 1 2  , respectively.

The solution set:

The set of all possible solutions of a linear system.



52 2. Systems of Linear Equations

LINES, PLANES, HYPERPLANES.

The set of points in the plane satisfying +  =  form a line.

The set of points in space satisfying +  +  =  form a plane.

The set of points satisfying 11 + +  = 0 define a set

called a hyperplane in -dimensional space.

Example 2.2 Two equations in two variables

:

1 + 2 = 10

−1 + 2 = 0

1 − 22 = −3
21 − 42 = 8

2 4 6 8 10
x1

2

4

6

8

10
x2

- 1 1 2 3 4 5
x1

- 2

- 1

1

2

3

4
x2

one unique solution no solution

1 + 2 = 3

−21 − 22 = −6

- 1 1 2 3 4 5
x1

- 2

- 1

1

2

3

4

x2

infinitely many solutions

SOLVE BY COMPUTER.

Use the computer. In Mathematica:

Solve[ {5− 2 + 7 == 15, 3+ 8 −  == −4, −9+ 6 + 10 == 7},
{  }]

But what did Mathematica do to solve this equation? We will look in this

course at some efficient algorithms.

GEOMETRIC SOLUTION.

If a linear equation has only three variables, then they are usually denoted

by   and  with a linear equation written as

+  +  = 
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Fig. 2.1. Solution set for three variable linear equation.

Fig. 2.2. The intersection of two planes is here a line.

for real constant  through  The plot of the solution set for such a three-

variable linear equation is a plane in space with coordinates   and . As an

example, consider the following system of linear equations

5− 2 + 7 = 15

3+ 8 −  = −4
−9+ 6 + 10 = 7

Let’s the plot of the solution set for the first three variable linear equation

from that system (see Figure 2.1).

The second plane is the solution set to the second equation. To satisfy the

first two equations means to be on the intersection of these two planes which

is here a line (Figure 2.2).

To satisfy all three equations (in this case), we have to intersect the line

with the plane representing the third equation which is a point (Figure 2.3).

Two equations could contradict each other. Geometrically this means that

the two planes do not intersect. This is possible if they are parallel. Even

without two planes being parallel, it is possible that there is no intersection

between all three of them (Figure 2.4). Also possible is that we don’t have

enough equations (for example because two equations are the same) and that

there are many solutions. Furthermore, we can have too many equations and

the four planes would not intersect.
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Fig. 2.3. Unique solution for the system of three linear equations

Fig. 2.4. Even without two planes being parallel, it is possible that there is no inter-

section between all three of them.
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BASIC FACT: A system of linear equations has either

i) exactly one solution (consistent) or

ii) infinitely many solutions (consistent) or

iii) no solution (inconsistent).

Example 2.3 Three equations in three variables. Each equation determines

a plane in 3-space



i) The planes intersect in ii) The planes intersect in one

one point. (one solution) line. (infinitely many solutions)

iii) There is not point in common

to all three planes. (no solution)

:

• Two linear systems with the same solution set.
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2.1 Strategy for solving a system

• Replace one system with an equivalent system that is easier to solve.

Example 2.4

1 − 22 = −1
−1 + 32 = 3

−→ 1 − 22 = −1
2 = 2

−→ 1 = 3

2 = 2

- 10 - 5 5 10
x1

- 4

- 2

2

4

x2

- 10 - 5 5 10
x1

- 4

- 2

2

4

x2

1 − 22 = −1
−1 + 32 = 3

1 − 22 = −1
2 = 2

- 10 - 5 5 10

- 4

- 2

2

4

1 = 3

2 = 2

Matrix Notation

1 − 22 = −1
−1 + 32 = 3

∙
1 −2
−1 3

¸
(coefficient matrix)
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1 − 22 = −1
−1 + 32 = 3

∙
1 −2 −1
−1 3 3

¸
↓ (augmented matrix)

1 − 22 = −1
2 = 2

∙
1 −2 −1
0 1 2

¸
↓

1 = 3

2 = 2

∙
1 0 3

0 1 2

¸

Elementary Row Operations:

1. (Replacement) Add one row to a multiple of another row.

2. (Interchange) Interchange two rows.

3. (Scaling) Multiply all entries in a row by a nonzero constant.

Each of those three operations has a restriction. Multiplying a row by 0 is

not allowed because obviously that can change the solution set of the system.

Similarly, adding a multiple of a row to itself is not allowed because adding

−1 times the row to itself has the effect of multiplying the row by 0. Finally,
swapping (i.e. interchange) a row with itself is disallowed to make some results

in the next lectures easier to state and remember (and besides, self-swapping

doesn’t accomplish anything). The three elementary row operations are some-

times called the Gaussian operations. ??

Row equivalent matrices: Two matrices where one matrix can be trans-

formed into the other matrix by a sequence of elementary row operations.

Fact about Row Equivalence: If the augmented matrices of two linear

systems are row equivalent, then the two systems have the same solution set.

1 − 22 + 3 = 0

22 − 83 = 8

−41 + 52 + 93 = −9

⎡⎣ 1 −2 1 0

0 2 −8 8

−4 5 9 −9

⎤⎦
1 − 22 + 3 = 0

22 − 83 = 8

− 32 + 133 = −9

⎡⎣ 1 −2 1 0

0 2 −8 8

0 −3 13 −9

⎤⎦
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1 − 22 + 3 = 0

2 − 43 = 4

− 32 + 133 = −9

⎡⎣ 1 −2 1 0

0 1 −4 4

0 −3 13 −9

⎤⎦
1 − 22 + 3 = 0

2 − 43 = 4

3 = 3

⎡⎣ 1 −2 1 0

0 1 −4 4

0 0 1 3

⎤⎦
1 − 22 = −3

2 = 16

3 = 3

⎡⎣ 1 −2 0 −3
0 1 0 16

0 0 1 3

⎤⎦
1 = 29

2 = 16

3 = 3

⎡⎣ 1 0 0 29

0 1 0 16

0 0 1 3

⎤⎦
Solution: (29 16 3)

Check: Is (29 16 3) a solution of the original system?

1 − 22 + 3 = 0

22 − 83 = 8

−41 + 52 + 93 = −9

(29)− 2(16)+ 3 = 29− 32 + 3 = 0

2(16)− 8(3) = 32− 24 = 8

−4(29) + 5(16) + 9(3) = −116 + 80 + 27 = −9

Matrix "jargon". A rectangular array of numbers is called a matrix. If the

matrix has  rows and  columns, it is called a × matrix. A matrix with

one column only is called a column vector, a matrix with one row a row

vector. The entries of a matrix are denoted by  , where  is the row and 

is the column.

In the case of the linear equation above, the coefficient matrix  is a square

matrix and the augmented matrix  above is a 3× 4 matrix.

Row picture and column picture of the same matrix:
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Fig. 2.5. 3× 4 matrix.

Fig. 2.6. This 4× 3 matrix can be viewed as an ordered set of 4 rows or as an ordered
set of 3 columns.

Two Fundamental Questions (Existence and Uniqueness)

1. Is the system consistent; (i.e. does a solution exist?)

2. If a solution exists, is it unique? (i.e. is there one & only one solution?)

Example 2.5 Is this system consistent?

1 − 22 + 3 = 0

22 − 83 = 8

−41 + 52 + 93 = −9
In the last example, this system was reduced to the triangular form:

1 − 22 + 3 = 0

2 − 43 = 4

3 = 3

⎡⎣ 1 −2 1 0

0 1 −4 4

0 0 1 3

⎤⎦
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This is sufficient to see that the system is consistent and unique. Why?

Example 2.6 Is this system consistent?

32− 63 = 8

1 − 22+ 33 = −1
51 − 72 + 93 = 0

⎡⎣ 0 3 −6 8

1 −2 3 −1
5 −7 9 0

⎤⎦
Solution: Row operations produce:⎡⎣ 0 3 −6 8

1 −2 3 −1
5 −7 9 0

⎤⎦→
⎡⎣ 1 −2 3 −1
0 3 −6 8

0 3 −6 5

⎤⎦→
⎡⎣ 1 −2 3 −1
0 3 −6 8

0 0 0 −3

⎤⎦
Equation notation of triangular form:

1 − 22 + 33 = −1
32 − 63 = 8

03 = −3 ← Never true

The original system is inconsistent!

Example 2.7 For what values of  will the following system be consistent?

31 − 92 = 4

−21 + 62 = 

Solution: Reduce to triangular form.∙
3 −9 4

−2 6 

¸
→
∙

1 −3 4
3

−2 6 

¸
→
∙
1 −3 4

3

0 0 + 8
3

¸
The second equation is 01 + 02 =  + 8

3
 System is consistent only if

+ 8
3
= 0 or  = −8

3


Example 2.8 As an example of a system with many variables, consider a

drum modeled by a fine net. The heights at each interior node needs the average

the heights of the 4 neighboring nodes. The height at the boundary is fixed.

With 2 nodes in the interior, we have to solve a system of 2 equations. For

example, for  = 2 (see left), the 2 = 4 equations are

11 = 21 + 12 + 21 + 12

12 = 11 + 13 + 22 + 22

21 = 31 + 11 + 22 + 43

22 = 12 + 21 + 43 + 34
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To the right, we see the solution to a problem with  = 300, where the

computer had to solve a system with 90000 variables.

Exercise 2.1 Emile and Gertrude are brother and sister. Emile has twice as

many sisters as brothers, and Gertrude has just as many brothers as sisters.

How many children are there in this family?

Exercise 2.2 On your next trip to Switzerland, you should take the scenic

boat ride from Rheinfall to Rheinau and back. The trip downstream from Rhe-

infall to Rheinau takes 20 minutes, and the return trip takes 40 minutes; the

distance between Rheinfall and Rheinau along the river is 8 kilometers. How

fast does the boat travel (relative to the water), and how fast does the river

Rhein flow in this area? You may assume both speeds to be constant through-

out the journey.

Exercise 2.3 In a grid of wires, the temperature at exterior mesh points is

maintained at constant values (in ◦) as shown in the accompanying figure 2.7.
When the grid is in thermal equilibrium, the temperature  at each interior

mesh point is the average of the temperatures at the four adjacent points. For

example,

2 =
1 + 3 + 200 + 0

4

Find the temperatures 1, 3, and 3 when the grid is in thermal equilibrium.
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Fig. 2.7. Grid of wires.
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Row Reduction and Echelon Forms

Echelon form (or row echelon form):

1. All nonzero rows are above any rows of all zeros.

2. Each leading entry (i.e. left most nonzero entry) of a row is in a column to

the right of the leading entry of the row above it.

3. All entries in a column below a leading entry are zero.

Example 3.1 Echelon forms

(a)

⎡⎢⎢⎣
¥ ∗ ∗ ∗ ∗
0 ¥ ∗ ∗ ∗
0 0 0 0 0

0 0 0 0 0

⎤⎥⎥⎦ (b)

⎡⎢⎢⎣
¥ ∗ ∗
0 ¥ ∗
0 0 ¥
0 0 0

⎤⎥⎥⎦

(c)

⎡⎢⎢⎢⎢⎣
0 ¥ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 ¥ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 ¥ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 ¥ ∗ ∗ ∗
0 0 0 0 0 0 0 0 ¥ ∗ ∗

⎤⎥⎥⎥⎥⎦
Reduced echelon form: Add the following conditions to conditions 1, 2,

and 3 above:

4. The leading entry in each nonzero row is 1.

5. Each leading 1 is the only nonzero entry in its column.

Pro memoriam:
Leaders like to be number one, are lonely

and want other leaders above to their left.

Example 3.2 (continued):

Reduced echelon form (rref) :
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0 1 ∗ 0 0 ∗ ∗ 0 0 ∗ ∗
0 0 0 1 0 ∗ ∗ 0 0 ∗ ∗
0 0 0 0 1 ∗ ∗ 0 0 ∗ ∗
0 0 0 0 0 0 0 1 0 ∗ ∗
0 0 0 0 0 0 0 0 1 ∗ ∗

⎤⎥⎥⎥⎥⎦
Theorem 3.3 (Uniqueness of The Reduced Echelon Form): Each

matrix is row-equivalent to one and only one reduced echelon matrix.

Important Terms:

• pivot position: a position of a leading entry in an echelon form of the

matrix.

• pivot: a nonzero number that either is used in a pivot position to create
0’s or is changed into a leading 1, which in turn is used to create 0’s.

• pivot column: a column that contains a pivot position.

Example 3.4 Row reduce to echelon form and locate the pivot columns.⎡⎢⎢⎣
0 −3 −6 4 9

−1 −2 −1 3 1

−2 −3 0 3 −1
1 4 5 −9 −7

⎤⎥⎥⎦

Solution

pivot

.⎡⎢⎢⎣
1 4 5 −9 −7
−1 −2 −1 3 1

−2 −3 0 3 −1
0 −3 −6 4 9

⎤⎥⎥⎦
↑

pivot column⎡⎢⎢⎣
1 4 5 −9 −7
0 2 4 −6 −6
0 5 10 −15 −15
0 −3 −6 4 9

⎤⎥⎥⎦
Possible Pivots:
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1 4 5 −9 −7
0 2 4 −6 −6
0 0 0 0 0

0 0 0 −5 0

⎤⎥⎥⎦ ∼
⎡⎢⎢⎣
1 4 5 −9 −7
0 2 4 −6 −6
0 0 0 −5 0

0 0 0 0 0

⎤⎥⎥⎦

Original Matrix:

⎡⎢⎢⎣
0 −3 −6 4 9

−1 −2 −1 3 1

−2 −3 0 3 −1
1 4 5 −9 −7

⎤⎥⎥⎦
pivot columns:

↑ ↑ ↑
1 2 4

Note: There is no more than one pivot in any row. There is no more than

one pivot in any column.

Example 3.5 Row reduce to echelon form and then to reduced echelon form:⎡⎣ 0 3 −6 6 4 −5
3 −7 8 −5 8 9

3 −9 12 −9 6 15

⎤⎦
Solution:

Step 1: Begin with the leftmost nonzero column. This is a pivot column. The

pivot position is at the top.⎡⎣ 0 3 −6 6 4 −5
3 −7 8 −5 8 9

3 −9 12 −9 6 15

⎤⎦ ∼
⎡⎣ 3 −9 12 −9 6 15

3 −7 8 −5 8 9

0 3 −6 6 4 −5

⎤⎦
Step 2: Use row replacement operations to create zeros in all positions below

the pivot.

∼
⎡⎣ 3 −9 12 −9 6 15

0 2 −4 4 2 −6
0 3 −6 6 4 −5

⎤⎦
Step 3: Cover (or ignore) the row containing the pivot position and cover all

rows, if any, above it. Apply steps 1—3 to the submatrix that remains. Repeat

the process until there are no more nonzero rows to modify.

⎡⎣ 3 −9 12 −9 6 15

0 2 −4 4 2 −6
0 3 −6 6 4 −5

⎤⎦ ∼
⎡⎣ 3 −9 12 −9 6 15

0 1 −2 2 1 −3
0 3 −6 6 4 −5

⎤⎦
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∼
⎡⎣ 3 −9 12 −9 6 15

0 1 −2 2 1 −3
0 0 0 0 1 4

⎤⎦ (echelon form)

Final step to create the reduced echelon form: Beginning with the

rightmost leading entry, and working upwards to the left, create zeros above

each leading entry and scale rows to transform each leading entry into 1.⎡⎣ 3 −9 12 −9 0 −9
0 1 −2 2 0 −7
0 0 0 0 1 4

⎤⎦ ∼
⎡⎣ 3 0 −6 9 0 −72
0 1 −2 2 0 −7
0 0 0 0 1 4

⎤⎦ ∼⎡⎣ 1 0 −2 3 0 −24
0 1 −2 2 0 −7
0 0 0 0 1 4

⎤⎦

3.1 Solutions of linear systems

• basic variable: any variable that corresponds to a pivot column in the
augmented matrix of a system.

• free variable: all nonbasic variables.

SOLUTIONS OF LINEAR EQUATIONS. A system  =  with  equa-

tions and  unknowns is defined by the  ×  coefficient matrix  and the

 vector . The row reduced matrix rref() of the augmented matrix 

determines the number of solutions of the system  = . There are three

possibilities (see Figure 3.1):

• Consistent: Exactly one solution. There is a leading 1 in each row but
none in the last column of .

• Inconsistent: No solutions. There is a leading 1 in the last column of
.

• Infinitely many solutions. There are rows of  without leading 1.

If    (less equations then unknowns), then there are either zero or

infinitely many solutions.

The rank() of a matrix  is the number of leading ones in rref().
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How do we determine in which case we are? It is the rank of  and the rank

of the augmented matrix  = [|] as well as the number  of columns which

determine everything:

If rank() = rank() =  : there is exactly 1 solution.

If rank()  rank() : there are no solutions.

If rank() = rank()   : there are many solutions.

Example 3.6

⎡⎣ 1 6 0 3 0 0

0 0 1 −8 0 5

0 0 0 0 1 7

⎤⎦ 1 +62 +34 = 0

3 −84 = 5

5 = 7

pivot columns: 1 3 5

basic variables: 1 3 5
free variables: 2 4

Final Step in Solving a Consistent Linear System: After the aug-

mented matrix is in reduced echelon form and the system is written down as

a set of equations:

Solve each equation for the basic variable in terms of the free variables (if

any) in the equation.

Example 3.7

1 +62 +34 = 0

3 −84 = 5

5 = 7

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 = −62 − 34
2 is free

3 = 5 + 84
4 is free

5 = 7

(general solution)

Example 3.8 (Ex. 3.4 cont.) The system of linear equations associated with

the augmented matrix

 =

⎡⎢⎢⎣
0 −3 −6 4 9

−1 −2 −1 3 1

−2 −3 0 3 −1
1 4 5 −9 −7

⎤⎥⎥⎦ (3.1)

(see Ex. 3.4) has the following form:

−32 −63 +44 = 9

−1 −22 −13 +34 = 1

−21 −32 +34 = −1
1 +42 +53 −94 = −7

 (3.2)
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Fig. 3.1. There are three possibilities in the system  = 
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As the reduced row echelon form of  is equal to⎡⎢⎢⎣
1 0 −3 0 5

0 1 2 0 −3
0 0 0 1 0

0 0 0 0 0

⎤⎥⎥⎦ (3.3)

(check it!) we conclude, that the general solution of our system is:

1 = 5 + 3

2 = −3− 2
3 = 

4 = 0

where values of  are arbitrary. ¤

The general solution of the system provides a parametric description of

the solution set. (The free variables act as parameters.) The above system

has infinitely many solutions. Why?

Warning: Use only the reduced echelon form to solve a system.

3.2 Linear Systems with free variables (cont.)

Using Gaussian elimination we can try to solve systems of linear equations

with any number of equations and unknowns. We will now look at an example

of a linear system with four equations in five unknowns:⎧⎪⎪⎨⎪⎪⎩
1 + 2 + 3 + 4 + 5 = 3

21 + 2 + 3 + 4 + 25 = 4

1 − 2 − 3 + 4 + 5 = 5

1 + 4 + 5 = 4

The augmented matrix is

(|b) =

⎡⎢⎢⎣
1 1 1 1 1 3

2 1 1 1 2 4

1 −1 −1 1 1 5

1 0 0 1 1 4

⎤⎥⎥⎦
Check that your augmented matrix is correct before you proceed, or you could

be solving the wrong system! A good method is to first write down the coef-

ficients by rows, reading across the equations, and then to check the columns

do correspond to the coefficients of that variable.
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Now follow the algorithm to put (|b) into reduced row echelon form:

→
2 − 21
3 −1
4 −1

⎡⎢⎢⎣
1 1 1 1 1 3

0 −1 −1 −1 0 −2
0 −2 −2 0 0 2

0 −1 −1 0 0 1

⎤⎥⎥⎦

(−1)2
→

⎡⎢⎢⎣
1 1 1 1 1 3

0 1 1 1 0 2

0 −2 −2 0 0 2

0 −1 −1 0 0 1

⎤⎥⎥⎦

→
3 + 22
4 +2

⎡⎢⎢⎣
1 1 1 1 1 3

0 1 1 1 0 2

0 0 0 2 0 6

0 0 0 1 0 3

⎤⎥⎥⎦

→¡
1
2

¢
3

⎡⎢⎢⎣
1 1 1 1 1 3

0 1 1 1 0 2

0 0 0 1 0 3

0 0 0 1 0 3

⎤⎥⎥⎦

→

4 −3

⎡⎢⎢⎣
1 1 1 1 1 3

0 1 1 1 0 2

0 0 0 1 0 3

0 0 0 0 0 0

⎤⎥⎥⎦
This matrix is in row echelon form. We continue to reduced row echelon form,

starting with the third row:

1 −3
2 −3
→

⎡⎢⎢⎣
1 1 1 0 1 0

0 1 1 0 0 −1
0 0 0 1 0 3

0 0 0 0 0 0

⎤⎥⎥⎦
1 −2

→

⎡⎢⎢⎣
1 0 0 0 1 1

0 1 1 0 0 −1
0 0 0 1 0 3

0 0 0 0 0 0

⎤⎥⎥⎦
There are only three leading ones in the reduced row echelon form of this

matrix. These appear in columns 1 2 and 4. Since the last row gives no infor-

mation, but merely states that 0 = 0 , the matrix is equivalent to the system
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of equations: ⎧⎨⎩
1 + 5 = 1

2 + 3 = −1
4 = 3

The form of these equations tells us that we can assign any values to 3 and

5, and then the values of 1, 2 and 4 will be determined.

Definition 3.9 (Leading variables) The variables corresponding to the co-

lumns with leading ones in the reduced row echelon form of an augmented

matrix are called leading variables. The other variables are called non-leading

variables.

In this example, the variables 1 2 and 4 are leading variables, 3 and 5
are non-leading variables. We assign 3, 5 the arbitrary values   where  

represent any real numbers, and then solve for the leading variables in terms

of these. We get

4 = 3 2 = −1−   1 = 1− 

Then we express this solution in vector form:

x =

⎛⎜⎜⎜⎜⎝
1
2
3
4
5

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
1− 

−1− 



3



⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
1

−1
0

3

0

⎞⎟⎟⎟⎟⎠+ 

⎛⎜⎜⎜⎜⎝
0

−1
1

0

0

⎞⎟⎟⎟⎟⎠+ 

⎛⎜⎜⎜⎜⎝
−1
0

0

0

1

⎞⎟⎟⎟⎟⎠ 

Observe that this system is consistent and there are infinitely many solutions,

because any values of  ∈ R and  ∈ R will give a solution.
The solution given above is called a general solution of the system, because

it gives a solution for any values of  and , and any solution of the equation

is of this form for some   ∈ R. For any particular assignment of values to 
and , such as  = 0,  = 1, we obtain a particular solution of the system.

With practice, you will be able to read the general solution directly from

the reduced row echelon form of the augmented matrix. We have

(|b)→

⎡⎢⎢⎣
1 0 0 0 1 1

0 1 1 0 0 −1
0 0 0 1 0 3

0 0 0 0 0 0

⎤⎥⎥⎦
Locate the leading ones, and note which are the leading variables. Then locate

the non-leading variables and assign each an arbitrary parameter.
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So, as above, we note that the leading ones are in the first, second and

fourth column, and so correspond to 1, 2 and 4. Then we assign arbitrary

parameters to the non-leading variables; that is, values such as 3 =  and

5 = , where  and  represent any real numbers. Then write down the vector

x = (1 2 3 4 5)
 (as a column) and fill in the values starting with 5

and working up. We have 5 = . Then the third row tells us that 4 = 3.

We have 3 =  Now look at the second row, which says 2 + 3 = −1, or
2 = −1−  Then the top row tells us that 1 = 1− . In this way, we obtain

the solution in vector form.

3.3 Existence and Uniqueness Questions

Example 3.10⎧⎨⎩
32 −63 +64 +45 = −5

31 −72 +83 −54 +85 = 9

31 −92 +123 −94 +65 = 15

In an earlier example, we obtained the echelon form:

⎡⎣ 3 −9 12 −9 6 15

0 2 −4 4 2 −6
0 0 0 0 1 4

⎤⎦
(5 = 4)

No equation of the form 0 =  where  6= 0, so the system is consistent.

Free variables: 3 and 4

Consistent system

with free variables
=⇒ infinitely many solutions.

31 +42 = −3
21 +52 = 5

−21 −32 = 1

→
⎡⎣ 3 4 −3

2 5 5

−2 −3 1

⎤⎦ ∼
⎡⎣ 3 4 −3
0 1 3

0 0 0

⎤⎦ −→
31 + 42 = −3
2 = 3

Consistent system,

no free variables
=⇒ unique solution.

Theorem 3.11 (Existence and Uniqueness Theorem)
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1. A linear system is consistent if and only if the rightmost column of the

augmented matrix is not a pivot column, i.e., if and only if an echelon

form of the augmented matrix has no row of the form£
0  0 

¤
(   )

2. If a linear system is consistent, then the solution contains either

i) a unique solution (when there are no free variables) or

ii) infinitely many solutions (when there is at least one free variable).

Using Row Reduction to Solve Linear Systems

1. Write the augmented matrix of the system.

2. Use the row reduction algorithm to obtain an equivalent augmented

matrix in echelon form. Decide whether the system is consistent. If

not, stop; otherwise go to the next step.

3. Continue row reduction to obtain the reduced echelon form.

4. Write the system of equations corresponding to the matrix obtained in

step 3.

5. State the solution by expressing each basic variable in terms of the free

variables and declare the free variables.

1. a) What is the largest possible number of pivots a 4 × 6 matrix can
have? Why?

b) What is the largest possible number of pivots a 6 × 4 matrix can
have? Why?

c) How many solutions does a consistent linear system of 3 equations

and 4 unknowns have? Why?

d) Suppose the coefficient matrix corresponding to a linear system is

4× 6 and has 3 pivot columns. How many pivot columns does the
augmented matrix have if the linear system is inconsistent?

Exercise 3.1 The reduced echelon form of the augmented matrix  deter-

mines on how many solutions the linear system  =  has. Check, if the

answers are correct:
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The "good" 1 solution⎡⎣ 0 1 2 2

1 −1 1 5

2 1 −1 −2

⎤⎦
⎡⎣ 1 −1 1 5

0 1 2 2

2 1 −1 −2

⎤⎦
⎡⎣ 1 −1 1 5

0 1 2 2

0 3 −3 −12

⎤⎦
⎡⎣ 1 −1 1 5

0 1 2 2

0 1 −1 −4

⎤⎦
⎡⎣ 1 0 3 7

0 1 2 2

0 0 −3 −6

⎤⎦
⎡⎣ 1 0 3 7

0 1 2 2

0 0 1 2

⎤⎦
⎡⎣ 1 0 0 1

0 1 0 −2
0 0 1 2

⎤⎦
rank() = 3 rank() = 3
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The "bad" 0 solution⎡⎣ 0 1 2 2

1 −1 1 5

1 0 3 −2

⎤⎦
⎡⎣ 1 −1 1 5

0 1 2 2

1 0 3 −2

⎤⎦
⎡⎣ 1 −1 1 5

0 1 2 2

0 1 2 −7

⎤⎦
⎡⎣ 1 −1 1 5

0 1 2 2

0 0 0 −9

⎤⎦
⎡⎣ 1 0 3 7

0 1 2 2

0 0 0 −9

⎤⎦
⎡⎣ 1 0 3 7

0 1 2 2

0 0 0 1

⎤⎦
rank() = 2 rank() = 3
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The "ugly" ∞ solutions⎡⎣ 0 1 2 2

1 −1 1 5

1 0 3 7

⎤⎦
⎡⎣ 1 −1 1 5

0 1 2 2

1 0 3 7

⎤⎦
⎡⎣ 1 −1 1 5

0 1 2 2

1 1 2 2

⎤⎦
⎡⎣ 1 −1 1 5

0 1 2 2

0 0 0 0

⎤⎦
⎡⎣ 1 0 3 7

0 1 2 2

0 0 0 0

⎤⎦
rank() = 2 rank() = 2

Exercise 3.2 (Interpolation) Find the equation of the parabola which passes

through the points  = (0;−1),  = (1; 4) and  = (2; 13).

Exercise 3.3 15 kids have bicycles or tricycles. Together they count 37 wheels.

How many have bicycles?"

Exercise 3.4 This system is not linear, in some sense,

2 sin− cos + 3 tan  = 3

4 sin+ 2cos − 2 tan  = 10

6 sin− 3 cos + tan  = 9

and yet we can nonetheless apply Gauss’ method. Do so. Does the system have

a solution?
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Vector equations

Important properties of linear systems can be described with the concept and

notation of vectors. This chapter connects equations involving vectors to or-

dinary systems of equations.

Key concepts to master: linear combinations of vectors and a spanning

set.

Vector: A matrix with only one column.

Vectors in R (vectors with  entries):

u =

⎡⎢⎢⎢⎣
1
2
...



⎤⎥⎥⎥⎦

4.1 Geometric Description of R2

Vector

∙
1
2

¸
is the point (1 2) in the plane.

R2 is the set of all points in the plane.

Two vectors in R2 are equal if and only if their corresponding entries are

equal. Thus

∙
2

5

¸
and

∙
5

2

¸
are not equal, because vectors in R2 are ordered

pairs of real numbers.

Given two vectors u and v in R2, their sum is the vector u+ v obtained by

adding corresponding entries of u and v. For example,∙
2

5

¸
+

∙
5

2

¸
=:

∙
7

7

¸
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Given a vector u and a real number , the scalar multiple of u by  is the

vector u obtained by multiplying each entry in u by . For instance,

if u =

∙
2

5

¸
and  = 3 then u =3

∙
2

5

¸
=

∙
6

15

¸


The number  in u is called a scalar ; it is written in lightface type to distin-

guish it from the boldface vector u.

The operations of scalar multiplication and vector addition can be combined,

as in the following example.

Example 4.1 Given vector u =

∙
2

5

¸
and v =

∙ −1
2

¸
, find (−3)u +2v

Solution:

(−3)u =
∙ −6
−15

¸
 2v =

∙ −2
4

¸
and

(−3)u+ 2v =
∙ −8
−11

¸
¤

Parallelogram rule for addition of two vectors:

If u and v in R2 are represented as points in the plane, then u+v corresponds
to the fourth vertex of the parallelogram whose other vertices are 0, u and v.

(Note that 0 =

∙
0

0

¸
.)

Example 4.2 Let u =

∙
1

3

¸
and v =

∙
2

1

¸
. Graphs of uv and u+ v are

given below (see Fig.4.1 ):

Example 4.3 Let u =

∙
1

2

¸
. Express u, 2u, and −3

2
u on a graph (see Fig.

4.2).
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Fig. 4.1. Illustration of the Parallelogram Rule
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Fig. 4.2. Colinear vectors.
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Linear Combinations

Algebraic Properties of R :

Operations on vectors have the following properties, which can be verified

directly from the corresponding properties for real numbers.

1. u+ v = v + u

2. (u+ v)+w = u+(v +w)

3. u+ 0 = 0+ u = u

4. u+ (−u) = −u+ u = 0 where −u denotes (−1)u

5.  (u+ v) = u+ v

6. (+ )u = u+ u

7.  (u) = ()u

8. 1u = u

Definition 4.4 Given vectors v1v2    v in R and given scalars

1 2     , the vector y defined by

y = 1v1 + 2v2 + · · ·+ v

is called a linear combination of v1v2    v using weights 1 2     .

Examples of linear combinations of v1and v2:

3v1 + 2v2
1
3
v1 v1 − 2v2, 0

Example 4.5 Let v1 =

∙
2

1

¸
and v2 =

∙ −2
2

¸
. Express each of the

following as a linear combination of v1 and v2:

a =

∙
0

3

¸
 b =

∙ −4
1

¸
 c =

∙
6

6

¸
 d =

∙
7

−4
¸
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Example 4.6 Let a1 =

⎡⎣ 10
3

⎤⎦, a2 =
⎡⎣ 4

2

14

⎤⎦, a3 =
⎡⎣ 3

6

10

⎤⎦, and b =⎡⎣ −18
−5

⎤⎦.
Determine if b is a linear combination of a1, a2, and a3.

Solution: Vector b is a linear combination of a1, a2, and a3 if can we find

weights 1 2 3 such that

1a1 + 2a2 + 3a3 = b.

Vector Equation (fill-in):

Corresponding System:

1 + 42 + 33 = −1
22 + 63 = 8

31 + 142 + 103 = −5

Corresponding Augmented Matrix:
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0 2 6 8

3 14 10 −5

⎤⎦ ∼
⎡⎣ 1 0 0 1

0 1 0 −2
0 0 1 2

⎤⎦ =⇒
1 = ___

2 = ___

3 = ___

Review of the last example: a1, a2, a3 and b are columns of the aug-

mented matrix ⎡⎣ 1 4 3 −1
0 2 6 8

3 14 10 −5

⎤⎦
↑ ↑ ↑ ↑
a1 a2 a3 b

Solution to

1a1 + 2a2 + 3a3 = b

is found by solving the linear system whose augmented matrix is£
a1 a2 a3 b

¤
.

A vector equation

1a1 + 2a2 + · · ·+ a = b

has the same solution set as the linear system whose augmented

matrix is

£
a1 a2 · · · a b

¤
.

In particular, b can be generated by a linear combination of

a1a2    a if and only if there is a solution to the linear system

corresponding to the augmented matrix.

4.2 The Span of a Set of Vectors

Example 4.7 Let v =

⎡⎣ 34
5

⎤⎦  Label the origin
⎡⎣ 00
0

⎤⎦ together with v, 2v
and 15v on the graph below (Figure ??).
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x1

x2

x3

Fig. 4.3. v, 2v and 15v all lie on the same line. Span{v} is the set of all vectors of
the form v Here, Span{v} = a line through the origin.

Example 4.8 Label u v, u+ v and 3u+4v on the graph below (Figure 4.4).

.

Definition 4.9 Suppose v1v2    v are in R; then

Span{v1v2    v} = set of all linear combinations of v1v2    v.

Stated another way: Span{v1v2    v} is the collection of all vectors that
can be written as

1v1 + 2v2 + · · ·+ v

where 1 2      are scalars.

Example 4.10 Let v1 =

∙
2

1

¸
and v2 =

∙
4

2

¸
a) Find a vector in Span{v1v2}.

b) Describe Span{v1v2} geometrically.
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x1
x2

x3

Fig. 4.4. u v, u+ v and 3u+4v all lie in the same plane. Span{uv} is the set of
all vectors of the form 1u+ 2v Here, Span{uv} = a plane through the origin.

4.3 Spanning Sets in R3

Example 4.11 Let v1 =

⎡⎣ 4

2

2

⎤⎦ and v2 =
⎡⎣ 6

3

3

⎤⎦. Is Span{v1v2} a line
or a plane (Figure 4.5)?

Example 4.12 Let  =

⎡⎣ 1

3

0

2

1

5

⎤⎦ and b =
⎡⎣ 8

3

17

⎤⎦. Is b in the plane

spanned by the columns of ?

Solution:

 =

⎡⎣ 1

3

0

2

1

5

⎤⎦ b =

⎡⎣ 8

3

17

⎤⎦
Do 1 and 2 exist so that
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Fig. 4.5. v2 is a multiple of v1 Span{v1v2} =Span{v1} =Span{v2} (line through
the origin)

Fig. 4.6. v2 is not a multiple of v1, Span{v1v2} =plane through the origin
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Corresponding augmented matrix:

⎡⎣ 1 2 8

3 1 3

0 5 17

⎤⎦ ∼
⎡⎣ 1 2 8

0 −5 −21
0 5 17

⎤⎦ ∼
⎡⎣ 1 2 8

0 −5 −21
0 0 −4

⎤⎦
So b is not in the plane spanned by the columns of 
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5

The Matrix Equation Ax = b

Linear combinations can be viewed as a matrix-vector multiplication.

Definition 5.1 If  is an  ×  matrix, with columns a1a2    a, and

if x is in R, then the product of  and x, denoted by x, is the linear

combination of the columns of A using the corresponding entries in

x as weights. I.e.,

x =
£
a1 a2 · · · a

¤
⎡⎢⎢⎢⎣

1
2
...



⎤⎥⎥⎥⎦ = 1 a1 + 2 a2 + · · ·+ a

⎡⎣ 1 −43 2

0 5

⎤⎦∙ 7

−6
¸
= 7

⎡⎣ 13
0

⎤⎦+ (−6)
⎡⎣ −42

5

⎤⎦ =
⎡⎣ 7

21

0

⎤⎦+
⎡⎣ 24

−12
−30

⎤⎦ =
⎡⎣ 31

9

−30

⎤⎦
Example 5.2 Write down the system of equations corresponding to the aug-

mented matrix below and then express the system of equations in vector form

and finally in the form x = b where b is a 3× 1 vector.∙
2 3 4 9

−3 1 0 −2
¸

Solution: Corresponding system of equations (fill-in)

Vector Equation: (fill in)
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∙
2

−3
¸
+

∙
3

1

¸
+

∙
4

0

¸
=

∙
9

−2
¸


Matrix equation (fill-in):

Three equivalent ways of viewing a linear system:

1. as a system of linear equations;

2. as a vector equation 1a1 + 2a2 + · · ·+ a = b; or

3. as a matrix equation x = b.

Theorem 5.3 If  is a × matrix, with columns a1    a, and if b is in

R, then the matrix equation

x = b

• has the same solution set as the vector equation
1a1 + 2a2 + · · ·+ a = b

• which, in turn, has the same solution set as the system of linear equations
whose augmented matrix is£

a1 a2 · · · a b
¤


Useful Fact:

The equation x = b has a solution if and only if b is a
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_____________ _________ of the columns of .

Example 5.4 Let  =

⎡⎣ 1 4 5

−3 −11 −14
2 8 10

⎤⎦ and b =
⎡⎣ 1

2
3

⎤⎦  Is the equa-
tion x = b consistent for all b?

Solution: Augmented matrix corresponding to x = b:

⎡⎣ 1 4 5 1
−3 −11 −14 2
2 8 10 3

⎤⎦ ∼
⎡⎣ 1 4 5 1
0 1 1 31 + 2
0 0 0 −21 + 3

⎤⎦

x = b is _______ consistent for all b since some choices of b make

−21 + 3 nonzero.

 =

⎡⎣ 1 4 5

−3 −11 −14
2 8 10

⎤⎦
↑ ↑ ↑
a1 a2 a3

The equation x = b is consistent if

−21 + 3 = 0.

(equation of a plane in R3)
1a1 + 2a3 + 3a3 = b if and only if 3 − 21 = 0.
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b1

b2

b3

Columns of  span a plane

in R3 through 0

Instead, if any b in R3 (not just those lying on a particular line or in a
plane) can be expressed as a linear combination of the columns of , then we

say that the columns of  span R3.

Definition 5.5 We say that the columns of  =
£
a1 a2 · · · a

¤
span R if every vector b in R is a linear combination of a1    a (i.e.

Span {a1    a} = R).

Theorem 5.6 Let  be an × matrix. Then the following statements are

logically equivalent:

a) For each b in R, the equation x = b has a solution.

b) Each b in R is a linear combination of the columns of .

c) The columns of  span R.

d)  has a pivot position in every row.

Proof. (outline): Statements (a), (b) and (c) are logically equivalent.

To complete the proof, we need to show that (a) is true when (d) is true and

(a) is false when (d) is false.
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Suppose (d) is _____________. Then row-reduce the augmented ma-

trix
£
 b

¤
:

[ b] ∼ · · · ∼ [ d]

and each row of  has a pivot position and so there is no pivot in the last

column of [ d].

So (a) is _____________.Now suppose (d) is _____________.

Then the last row of [ d] contains all zeros.

Suppose d is a vector with a 1 as the last entry. Then [ d] represents an

inconsistent system.

Row operations are reversible: [ d] ∼ · · · ∼ [ b]

=⇒ [ b] is inconsistent also. So (a) is ____________.

Example 5.7 Let  =

⎡⎣ 1 2

3 4

5 6

⎤⎦ and b =
⎡⎣ 1

2
3

⎤⎦. Is the equation x = b

consistent for all possible b?

Solution:  has only ______ columns and therefore has

at most ______ pivots.

Since  does not have a pivot in every _________, x = b

is __________ _______________________ for all

possible b, according to Theorem 5.6.

Example 5.8 Do the columns of  =

⎡⎣ 1 2 3

2 4 6

0 3 9

⎤⎦ span R3?
Solution:⎡⎣ 1 2 3

2 4 6

0 3 9

⎤⎦ ∼
(no pivot in row 2)

By Theorem 5.6, the columns of  ____________.
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5.1 Another method for computing x :

The previous calculations were based on the definition of the product of a

matrix  and a vector x. The following simple example will lead to a different

(row-oriented) method for calculating the entries in x useful, when working

problems by hand.

Example 5.9 Compute x, where

 =

⎡⎣ 1 2 3

4 5 6

7 8 9

⎤⎦ and x =

⎡⎣ 1
2
3

⎤⎦ 
Solution: From the definition⎡⎣ 1 2 3

4 5 6

7 8 9

⎤⎦⎡⎣ 1
2
3

⎤⎦
= 1

⎡⎣ 14
7

⎤⎦+ 2

⎡⎣ 25
8

⎤⎦+ 3

⎡⎣ 36
9

⎤⎦ (5.1)

=

⎡⎣ 1
41
71

⎤⎦+
⎡⎣ 2252
82

⎤⎦+
⎡⎣ 3363
93

⎤⎦
=

⎡⎣ 1 + 22 + 33
41 + 52 + 63
71 + 82 + 93

⎤⎦
The first entry in the product x is a sum of products (sometimes called a

dot product), using the first row of  and the entries in x. That is,⎡⎣ 1 2 3
⎤⎦⎡⎣ 1

2
3

⎤⎦ = ∙ 1 + 22 + 33
¸

This matrix shows how to compute the first entry in x directly, without

writing down all the calculations shown in (5.1). Similarly, the second entry in

x can be calculated at once by multiplying the entries in the second row of

 by the corresponding entries in x and then summing the resulting products:⎡⎣ 4 5 6

⎤⎦⎡⎣ 1
2
3

⎤⎦ = ∙
41 + 52 + 63

¸
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Likewise, the third entry in x can be calculated from the third row of  and

the entries in . ¤

Theorem 5.10 If  is an × matrix, u and v are vectors in R, and  is

a scalar, then:

a)  (u+ v) = u+v;

b)  (u) = u
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6

Solutions Sets of Linear Systems

Solution sets of linear systems are important objects of study in linear algebra.

They will appear later in several different contexts. This chapter uses vector

notation to give explicit and geometric descriptions of such solution sets.

Homogeneous System:

x = 0

( is ×  and 0 is the zero vector in R)

Example 6.1

1 + 102 = 0

21 + 202 = 0

Corresponding matrix equation x = 0:∙
1 10

2 20

¸ ∙
1
2

¸
=

∙
0

0

¸
Trivial solution:

x =

∙
0

0

¸
or x = 0

The homogeneous system x = 0 always has the trivial solution, x = 0.

Nonzero vector solutions are called nontrivial solutions.

Do nontrivial solutions exist?∙
1 10 0

2 20 0

¸
∼
∙
1 10 0

0 0 0

¸
Consistent system with a free variable has infinitely many solutions.
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A homogeneous equation x = 0 has nontrivial solutions if and only if the

system of equations has at least one free variable.

Because a homogeneous linear system always has the trivial solution, there

are only two possibilities for its solutions:

1. The system has only the trivial solution.

2. The system has infinitely many solutions in addition to the trivial solu-

tion.

In the special case of a homogeneous linear system of two equations in two

unknowns, say

1+ 1 = 0 (1 1 not both zero)

2+ 2 = 0 (2 2 not both zero)

the graphs of the equations are lines through the origin, and the trivial solution

corresponds to the point of intersection at the origin

a) Only the trivial solution
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b) Infinitely many solutions

Example 6.2 Determine if the following homogeneous system has nontrivial

solutions and then describe the solution set.

21 + 42 − 63 = 0

41 + 82 − 103 = 0

Solution:

There is at least one free variable (why?)

=⇒ nontrivial solutions exist∙
2 4 −6 0

4 8 −10 0

¸
∼
∙
1 2 −3 0

4 8 −10 0

¸
∼
∙
1 2 −3 0

0 0 2 0

¸
∼∙

1 2 0 0

0 0 1 0

¸
1 =

2 is free

3 =

x =

⎡⎣ 1
2
3

⎤⎦ =
⎡⎣ −222

0

⎤⎦ = ____
⎡⎣ −21

0

⎤⎦ = 2v
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Graphical representation:

x1

x2

x3

solution set = span{v} = line through 0 in R3

Example 6.3 Describe the solution set of

21 + 42 − 63 = 0

41 + 82 − 103 = 4

( same left side as in the previous example)

Solution:

∙
2 4 −6 0

4 8 −10 4

¸
row reduces to

∙
1 2 0 6

0 0 1 2

¸

x =

⎡⎣ 1
2
3

⎤⎦ =

x =

⎡⎣ 60
2

⎤⎦+ 2

⎡⎣ −21
0

⎤⎦ = p+2v
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x1

x2

x3

Parallel solution sets of x = 0 & x = b

6.1 Recap of Previous Two Examples

Solution of x = 0

x = 2

⎡⎣ −21
0

⎤⎦ = 2v

x = 2v = parametric equation of line passing through 0 and v

Solution of x = b

x =

⎡⎣ 60
2

⎤⎦+ 2

⎡⎣ −21
0

⎤⎦ = p+2v
x = p+2v = parametric equation of line passing through p parallel to v
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Parallel solution sets of

x = b and x = 0

Theorem 6.4

a) Suppose p is a solution of x = b, so that p = b. Let v be any solution

of the homogeneous equation x = 0, and let w = p+ v. Then w is a

solution of x = b.

b) Every solution of x = b has the form w = p + v, with p a particular

solution of x = b and v a solution of x = 0.

Proof. Suppose p satisfies x = b. Then p = b. We claim that the solution

set of x = b equals the set  = {w : w = p + v for some v such that

v = 0 }. There are two things to prove:

a) every vector in  satisfies x = b,

b) every vector that satisfies x = b is in .

To prove ) let w have the form w = p+v, where v = 0 and let p = b.

Then

w =(p+ vh) =p+vh = b+ 0 = b

So every vector of the form p+ v, satisfies x = b.

To prove ) let w be any solution of x = b, and set v = w − p. Then

v = (w− p) = w−p = b− b = 0

So v satisfiesx = 0. Thus every solution of x = b has the formw = p+v
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Example 6.5 Describe the solution set of 21 − 42 − 43 = 0; compare it
to the solution set 21 − 42 − 43 = 6

Solution: Corresponding augmented matrix to 21 − 42 − 43 = 0:£
2 −4 −4 0

¤ ∼ (fill-in)

Vector form of the solution:

v =

⎡⎣ 22 + 232
3

⎤⎦ = ____
⎡⎣ 21
0

⎤⎦+____
⎡⎣ 20
1

⎤⎦
Corresponding augmented matrix to 21 − 42 − 43 = 6:£

2 −4 −4 6
¤ ∼ (fill -in)

Vector form of the solution (see Figure 6.1):

v =

⎡⎣ 3 + 22 + 232
3

⎤⎦ =
⎡⎣ ⎤⎦+____

⎡⎣ 21
0

⎤⎦+____
⎡⎣ 20
1

⎤⎦
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Fig. 6.1. Parallel Solution Sets of x = 0 and x = b



7

Linear Independence

The homogeneous equations in Chapter 6 can be studied from a different

perspective by writing them as vector equations. In this way, the focus shifts

from the unknown solutions of x = 0 to the vectors that appear in the vector

equations.

A homogeneous system such as⎡⎣ 1 2 −3
3 5 9

5 9 3

⎤⎦⎡⎣ 1
2
3

⎤⎦ =
⎡⎣ 00
0

⎤⎦
can be viewed as a vector equation

1

⎡⎣ 13
5

⎤⎦+ 2

⎡⎣ 25
9

⎤⎦+ 3

⎡⎣ −39
3

⎤⎦ =
⎡⎣ 00
0

⎤⎦ 
The vector equation has the trivial solution (1 = 0, 2 = 0, 3 = 0), but is

this the only solution?

Definition 7.1 A set of vectors {v1v2    v} in R is said to be linearly

independent if the vector equation

1v1 + 2v2 + · · ·+ v = 0

has only the trivial solution. The set {v1v2    v} is said to be linearly
dependent if there exists weights 1     not all 0, such that

1v1 + 2v2 + · · ·+ v = 0

↑
linear dependence relation

(when weights are not all zero)
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Example 7.2 Let v1 =

⎡⎣ 13
5

⎤⎦, v2 =
⎡⎣ 25
9

⎤⎦, v3 =
⎡⎣ −39

3

⎤⎦
a) Determine if {v1v2v3} is linearly independent.
b) If possible, find a linear dependence relation among v1v2v3.

Solution:

a)

1

⎡⎣ 13
5

⎤⎦+ 2

⎡⎣ 25
9

⎤⎦+ 3

⎡⎣ −39
3

⎤⎦ =
⎡⎣ 00
0

⎤⎦ 
Augmented matrix:

⎡⎣ 1 2 −3 0

3 5 9 0

5 9 3 0

⎤⎦ ∼
⎡⎣ 1 2 −3 0

0 −1 18 0

0 −1 18 0

⎤⎦ ∼
⎡⎣ 1 2 −3 0

0 −1 18 0

0 0 0 0

⎤⎦
3 is a free variable ⇒ there are nontrivial solutions.

{v1v2v3} is a linearly dependent set

b) Reduced echelon form:

⎡⎣ 1 0 33 0

0 1 −18 0

0 0 0 0

⎤⎦ =⇒ 1 =

2 =

3

Let 3 = _____ (any nonzero number). Then 1 = _____ and 2 =

_____.

____

⎡⎣ 13
5

⎤⎦+____
⎡⎣ 25
9

⎤⎦+____
⎡⎣ −39

3

⎤⎦ =
⎡⎣ 00
0

⎤⎦
or

____v1 +____v2 +____v3 = 0

(one possible linear dependence relation)

¤
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7.1 Linear Independence of Matrix Columns

A linear dependence relation such as

−33
⎡⎣ 13
5

⎤⎦+ 18
⎡⎣ 25
9

⎤⎦+ 1
⎡⎣ −39

3

⎤⎦ =
⎡⎣ 00
0

⎤⎦
can be written as the matrix equation:⎡⎣ 1 2 −3

3 5 9

5 9 3

⎤⎦⎡⎣ −3318
1

⎤⎦ =
⎡⎣ 00
0

⎤⎦.
Each linear dependence relation among the columns of 

corresponds to a nontrivial solution to x = 0.

The columns of matrix  are linearly independent if and only if

the equation x = 0 has only the trivial solution.

7.2 Special Cases

Sometimes we can determine linear independence of a set with minimal effort.

1. A Set of One Vector

Consider the set containing one nonzero vector: {v1}
The only solution to 1v1 = 0 is 1 = _____

So {v1} is linearly independent when v1 6= 0

2. A Set of Two Vectors

Example 7.3 Let

u1 =

∙
2

1

¸
 u2 =

∙
4

2

¸
 v1 =

∙
2

1

¸
 v2 =

∙
2

3

¸
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a) Determine if {u1u2} is a linearly dependent set or a linearly independent
set.

b) Determine if {v1v2} is a linearly dependent set or a linearly independent
set.

Solution:

a) Notice that u2 = _____u1. Therefore

_____u1 +_____u2 = 0

This means that {u1u2} is a linearly ________________ set.
b) Suppose

v1 + v2 = 0

Then v1 = v2 if  6= 0. But this is impossible since v1 is -

______ a multiple of v2 which means  = _____.

Similarly, v2 = v1 if  6= 0. But this is impossible since v2 is

not a multiple of v1 and so  = 0. This means that {v1v2} is a linearly
_________________ set.

A set of two vectors is linearly dependent if at least one vector is a multiple

of the other.

A set of two vectors is linearly independent if and only if neither of the vectors

is a multiple of the other.

linearly ________________ linearly ________________
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3. A Set Containing the 0 Vector

Theorem 7.4 A set of vectors  = {v1v2    v} in R containing the zero

vector is linearly dependent.

Proof: Renumber the vectors so that v1 = ____. Then

____v1 +_____v2 + · · ·+_____v = 0
which shows that  is linearly ________________.

4. A Set Containing Too Many Vectors

Theorem 7.5 If a set contains more vectors than there are entries in each

vector, then the set is linearly dependent. I.e. any set {v1v2    v} in R

is linearly dependent if   .

Outline of Proof:

 =
£
v1 v2 · · · v

¤
is × 

Suppose   

=⇒ x = 0 has more variables than equations

=⇒ x = 0 has nontrivial solutions

=⇒columns of  are linearly dependent

Example 7.6 With the least amount of work possible, decide which of the

following sets of vectors are linearly independent and give a reason for each

answer.

a.

⎧⎨⎩
⎡⎣ 32
1

⎤⎦ 
⎡⎣ 96
4

⎤⎦⎫⎬⎭ b. Columns of

⎡⎢⎢⎣
1 2 3 4 5

6 7 8 9 0

9 8 7 6 5

4 3 2 1 8

⎤⎥⎥⎦
c.

⎧⎨⎩
⎡⎣ 32
1

⎤⎦ 
⎡⎣ 96
3

⎤⎦ 
⎡⎣ 00
0

⎤⎦⎫⎬⎭ d.

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎣
8

2

1

4

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭
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7.3 Characterization of Linearly Dependent Sets

Example 7.7 Consider the set of vectors {v1v2v3v4} in R3 in the follow-
ing diagram (all in black). Is the set linearly dependent? Explain.

Theorem 7.8 An indexed set  = {v1v2    v} of two or more vectors is
linearly dependent if and only if at least one of the vectors in  is a linear

combination of the others. In fact, if  is linearly dependent, and v1 6= 0,

then some vector v ( ≥ 2) is a linear combination of the preceding vectors
v1    v−1.
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Introduction to Linear Transformations

In this chapter we shall begin the study of functions of the form w =  (x),

where the independent variable x is a vector in R and the dependent variable

w is a vector in R. We shall concentrate on a special class of such functions

called “linear transformations.” Linear transformations are fundamental in

the study of linear algebra and have many important applications in physics,

engineering, social sciences, and various branches of mathematics.

The difference between a matrix equation x = b and the associated vector

equation

1a1 + + a = b

is merely a matter of notation. However, a matrix equation x = b can arise

in linear algebra (and in applications such as computer graphics and signal

processing) in a way that is not directly connected with linear combinations of

vectors. This happens when we think of the matrix  as an object that “acts”

on a vector x by multiplication to produce a new vector called x.

 ∗ 

Another way to view x = b:

Matrix  is an object acting on x by multiplication to produce

a new vector x or b.

Example 8.1⎡⎣ 2 −43 −6
1 −2

⎤⎦∙ 2
3

¸
=

⎡⎣ −8−12
−4

⎤⎦ ⎡⎣ 2 −43 −6
1 −2

⎤⎦∙ 2
1

¸
=

⎡⎣ 00
0

⎤⎦
¤
Suppose  is × . Solving x = b amounts to finding all ____ in R

which are transformed into vector b in R through multiplication by .
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multiply by 
transformation

“machine”

8.1 Matrix Transformations

A transformation  from R to R is a rule that assigns to each vector x

in R a vector  (x) in R.

 : R −→ R

Terminology:

R: domain of  R: codomain of 

 (x) in R is the image of x under the transformation 

Set of all images  (x) is the range of 

Example 8.2 Let  =

⎡⎣ 1 0

2 1

0 1

⎤⎦. Define a transformation  : R2 −→ R3

by  (x) = x

Then if x =

∙
2

1

¸
,

 (x) = x =

⎡⎣ 1 0

2 1

0 1

⎤⎦∙ 2
1

¸
=

⎡⎣ 25
1

⎤⎦



8.1 Matrix Transformations 113

1 2 3 4
x1

1

2
x2

0 1 2 3

x1

0 2 4 6 8

x2

0

1

2

x3

0

1

2

x3

Exercise 8.1 Let  =

∙
1 −2 3

−5 10 −15
¸
, u =

⎡⎣ 23
1

⎤⎦, b =∙ 2

−10
¸

and c =

∙
3

0

¸
. Then define a transformation  : R3 → R2 by  (x) = x.

a) Find an x in R3 whose image under  is b.

b) Is there more than one x under  whose image is b. (uniqueness problem)

c) Determine if c is in the range of the transformation  . (existence problem)

Solution:

a) Solve _______=_____ for x. I.e., solve _______=_____ or

∙
1 −2 3

−5 10 −15
¸⎡⎣ 1

2
3

⎤⎦ = ∙ 2

−10
¸

Augmented matrix:

∙
1 −2 3 2

−5 10 −15 −10
¸
∼
∙
1 −2 3 2

0 0 0 0

¸ 1 = 22 − 33 + 2
2 is free

3 is free
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Let 2 = _____ and 3 = _____. Then 1 = _____. So

x =

⎡⎣ ⎤⎦

b) Is there an x for which  (x) = b?

Free variables exist =⇒ There is more than one x for which  (x) = b

c) Is there an x for which  (x) = c? This is another way of asking if x = c

is _______________.

Augmented matrix:

∙
1 −2 3 3

−5 10 −15 0

¸
∼
∙
1 −2 3 0

0 0 0 1

¸
c is not in the _______________ of  . ¤

Matrix transformations have many applications - including computer graph-

ics.

Example 8.3 Let  =

∙
5 0

0 5

¸
. The transformation  : R2 → R2 de-

fined by  (x) = x is an example of a contraction transformation. The

transformation  (x) = x can be used to move a point x.

u =

∙
8

6

¸
 (u) =

∙
5 0

0 5

¸ ∙
8

6

¸
=

∙
4

3

¸
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2 4 6 8 10 12

- 4

- 2

2

4

6

2 4 6 8 10 12

- 4

- 2

2

4

6

2 4 6 8 10 12

- 4

- 2

2

4

6

2 4 6 8 10 12

- 4

- 2

2

4

6

8.2 Linear Transformations

If  is×, then the transformation  (x) = x has the following properties:

 (u+ v) =  (u+ v) = _______+_______

= ______+______

and

 (u) =  (u) = _____u =_____ (u)

for all u,v in R and all scalars .

Definition 8.4 A transformation  is linear if:

i.  (u+ v) =  (u)+ (v) for all uv in the domain of  .

ii.  (u)= (u) for all u in the domain of  and all scalars .

Every matrix transformation is a linear transformation.

Theorem 8.5 If  is a linear transformation, then

 (0) = 0 and  (u+ v)=T (u)+T (v) 
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Proof.

 (0) =  (0u) = ____ (u) = _____

 (u+ v) =  ( )+ ( ) = _____ ( )+_____ ( )

Example 8.6 Let e1 =

∙
1

0

¸
, e2 =

∙
0

1

¸
, y1 =

⎡⎣ 1

0

2

⎤⎦ and y2 =
⎡⎣ 0

1

1

⎤⎦.
Suppose  : R2 → R3 is a linear transformation which maps e1 into y1 and

e2 into y2. Find the images of

∙
3

2

¸
and

∙
1
2

¸
.

Solution: First, note that

 (e1) = ______ and  (e2) = ______

Also

___e1 +___e2 =

∙
3

2

¸
Then



µ∙
3

2

¸¶
=  (___e1 +___e2) = ___ (e1) +___ (e2)

=
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1 2 3
x1

1

2
x2

0
1

2
3

x1

0
1

2 x2

0

2

4

6

8

x3

0
1

2
3

x1

0
1

2 x2

 (3e1 + 2e2) = 3 (e1) + 2 (e2)

Also



µ∙
1
2

¸¶
=  (_____e1 +_____e2) =

____ (e1) +____ (e2) =

_____________ ¤

Example 8.7 Define  : R3 → R2 such that

 (1 2 3) = (|1 + 3|  2 + 52) 
Show that  is a not a linear transformation.

Solution: Another way to write the transformation:



⎛⎝⎡⎣ 1
2
3

⎤⎦⎞⎠ =

∙ |1 + 3|
2 + 52

¸

Provide a counterexample - example where  (0) = 0,  (u)=T (u) or

 (u+ v) =  (u) +  (v) is violated.

A counterexample:

 (0) = 

⎛⎝⎡⎣ 0

0

0

⎤⎦⎞⎠ =

∙ ¸
6= _____
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which means that  is not linear.

Another counterexample: Let  = −1 and u =
⎡⎣ 11
1

⎤⎦. Then

 (u) = 

⎛⎝⎡⎣ −1−1
−1

⎤⎦⎞⎠ =

∙ |−1 +−1|
2 + 5 (−1)

¸
=

∙
2

−3
¸

and

 (u) = −1
⎛⎝⎡⎣ 1

1

1

⎤⎦⎞⎠ = −1
∙ ¸

=

∙ ¸


Therefore  (u) 6= ___ (u) and therefore  is not _____________.

¤
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The Matrix of a Linear Transformation

Identity Matrix  is an  ×  matrix with 1’s on the main left to right

diagonal and 0’s elsewhere. The ith column of  is labeled e.

Example 9.1

3 =
£
e1 e2 e3

¤
=

⎡⎣ 1 0 0

0 1 0

0 0 1

⎤⎦
¤

Note that

3x =

⎡⎣ 1 0 0

0 1 0

0 0 1

⎤⎦⎡⎣ 1
2
3

⎤⎦
= ____

⎡⎣ ⎤⎦+____
⎡⎣ ⎤⎦+____

⎡⎣ ⎤⎦ = ____.
In general, for x in R,

x = ___

From chapter 7, if  : R → R is a linear transformation, then

 (u+ v)=T (u)+T (v) 

Generalized Result:

 (1v1 + · · ·+ v)=1 (v1) + · · ·+  (v) 
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Example 9.2 The columns of 2 =

∙
1 0

0 1

¸
are e1 =

∙
1

0

¸
and e2 =∙

0

1

¸
 Suppose  is a linear transformation from R2 to R3 where

 (e1) =

⎡⎣ 2

−3
4

⎤⎦   (e2) =

⎡⎣ 50
1

⎤⎦ 
Compute  (x) for any x =

∙
1
2

¸
.

Solution: A vector x in R2 can be written as

∙
1
2

¸
= _____

∙
1

0

¸
+_____

∙
0

1

¸
= _____e1 +_____e2

Then

 (x) =  (1e1 + 2e2) = _____ (e1) +_____ (e2)

= _____

⎡⎣ 2

−3
4

⎤⎦+_____
⎡⎣ 50
1

⎤⎦ =
⎡⎣ ⎤⎦.

Note that

 (x) =

⎡⎣ ⎤⎦∙ 1
2

¸
.

So

 (x) =
£
 (e1)  (e2)

¤
x = x

To get , replace the identity matrix
£
e1 e2

¤
with

£
 (e2)  (e2)

¤
.
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Theorem 9.3 Let  : R → R be a linear transformation. Then there

exists a unique matrix  such that

 (x) = x for all x in R.

In fact,  is the ×  matrix whose -th column is the vector  (e), where

e is the -th column of the identity matrix in R.

 = [ (e1)  (e2) · · ·  (e)]

↑
standard matrix for the linear transformation 

⎡⎣ ? ?

? ?

? ?

⎤⎦∙ 1
2

¸
=

⎡⎣ 1 − 22
41

31 + 22

⎤⎦

Solution:⎡⎣ ? ?

? ?

? ?

⎤⎦ = standard matrix of the linear transformation 

⎡⎣ ? ?

? ?

? ?

⎤⎦ = £  (e1)  (e2)
¤
=

(fill-in)

¤

Example 9.4 Find the standard matrix of the linear transformation  :

R2 → R2 which rotates a point about the origin through an angle of 
4
radians

(counterclockwise).
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 (e1) =

∙
cos 

sin 

¸
 (e2) =

∙ − sin 
cos 

¸

=⇒  =

∙ ¸
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Matrix Operations

10.1 Matrix Notation

Two ways to denote ×  matrix :

a) In terms of the columns of :

 =
£
a1 a2 · · · a

¤

b) In terms of the entries of :

 =

⎡⎢⎢⎢⎢⎢⎢⎣
11 · · · 1 · · · 1
...

...

1 · · ·  · · · 
...

...
...

1 · · ·  · · · 

⎤⎥⎥⎥⎥⎥⎥⎦
Main diagonal entries:___________________

Zero matrix:

0 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 · · · 0 · · · 0
...

...

0 · · · 0 · · · 0
...

...
...

0 · · · 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎦
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Theorem 10.1 Let , , and  be matrices of the same size, and let  and

 be scalars. Then

a) + =  + d) (+) = + 

b) (+) +  = + ( + ) e) ( + ) = + 

c) + 0 =  f)  () = ()

10.2 Matrix Multiplication

Multiplying  and x transforms x into the vector x. In turn, if we multiply

 and x, we transform x into  (x). So  (x) is the composition of

two mappings.

Define the product  so that  (x) = ()x.

Suppose  is ×  and  is ×  where

 = [b1 b2 · · · b] and x =

⎡⎢⎢⎢⎣
1
2
...



⎤⎥⎥⎥⎦.
Then

x =1b1 + 2b2 + · · ·+ b

and

 (x)=(1b1 + 2b2 + · · ·+ b)

=  (1b1) + (2b2) + · · ·+ (b)

= 1b1 + 2b2 + · · ·+ b = [b1 b2 · · · b]

⎡⎢⎢⎢⎣
1
2
...



⎤⎥⎥⎥⎦.
Therefore,

 (x) = [b1 b2 · · · b]x.
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and by defining

 = [b1 b2 · · · b]
we have  (x) = ()x.

Example 10.2 Compute  where  =

⎡⎣ 4 −23 −5
0 1

⎤⎦ and  =

∙
2 −3
6 −7

¸
.

Solution:

b1 =

⎡⎣ 4 −23 −5
0 1

⎤⎦∙ 2
6

¸
 b2 =

⎡⎣ 4 −23 −5
0 1

⎤⎦∙ −3−7
¸

=

⎡⎣ −4−24
6

⎤⎦ =

⎡⎣ 2

26

−7

⎤⎦
=⇒  =

⎡⎣ −4 2

−24 26

6 −7

⎤⎦
Note that b1 is a linear combination of the columns of  and b2 is a

linear combination of the columns of 

Each column of  is a linear combination of the columns of 

using weights from the corresponding columns of 

Example 10.3 If  is 4× 3 and  is 3× 2, then what are the sizes of 
and ?

Solution:

 =

⎡⎢⎢⎣
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

⎤⎥⎥⎦
⎡⎣ ∗ ∗∗ ∗
∗ ∗

⎤⎦ =
⎡⎢⎢⎣

⎤⎥⎥⎦

 would be

⎡⎣ ∗ ∗∗ ∗
∗ ∗

⎤⎦
⎡⎢⎢⎣
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

⎤⎥⎥⎦ which is
__________________.

If  is ×  and  is × , then  is × .
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10.3 Row-Column Rule for Computing AB (alternate
method)

The definition

 = [b1 b2 · · · b]
is good for theoretical work.

When  and  have small sizes, the following method is more efficient when

working by hand.

If  is defined, let () denote the entry in the ith row and jth column

of . Then

() = 11 + 22 + · · ·+  .⎡⎢⎢⎢⎢⎣ 1 2 · · · 

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1
2
...



⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣ ()

⎤⎥⎥⎥⎥⎦

Example 10.4 Let  =

∙
2 3 6

−1 0 1

¸
,  =

⎡⎣ 2 −30 1

4 −7

⎤⎦  Compute 
if it is defined.

Solution: Since  is 2× 3 and  is 3× 2, then  is defined and  is

_____×_____.

 =

∙
2 3 6

−1 0 1

¸⎡⎣ 2 −3
0 1

4 −7

⎤⎦ = ∙ 28 ¥
¥ ¥

¸
,

∙
2 3 6

−1 0 1

¸⎡⎣ 2 −30 1

4 −7

⎤⎦ =∙
28 −45
¥ ¥

¸
∙

2 3 6

−1 0 1

¸⎡⎣ 2 −3
0 1

4 −7

⎤⎦ = ∙ 28 −45
2 ¥

¸
,

∙
2 3 6

−1 0 1

¸⎡⎣ 2 −30 1

4 −7

⎤⎦ =
∙
28 −45
2 −4

¸
So  =

∙
28 −45
2 −4

¸
. ¤
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Theorem 10.5 Let  be  ×  and let  and  have sizes for which the

indicated sums and products are defined.

a)  () = () (associative law of multiplication)

b)  ( + ) =  + (left - distributive law)

c) ( + ) = +  (right-distributive law)

d) () = () = ()

for any scalar 

e)  =  =  (identity for matrix multiplication)

WARNINGS:

Properties above are analogous to properties of real numbers. But NOT

ALL real number properties correspond to matrix properties.

1. It is not the case that  always equal . (see Exercises)

2. Even if  = , then  may not equal . (see Exercises)

3. It is possible for  = 0 even if  6= 0 and  6= 0. (see Exercises )

10.4 Powers of 

 =  · · ·| {z }
∙

1 0

3 2

¸3
=

∙
1 0

3 2

¸ ∙
1 0

3 2

¸ ∙
1 0

3 2

¸
=

∙ ¸ ∙
1 0

3 2

¸
=

∙
1 0

21 8

¸
If  is  × , the transpose of  is the  × matrix, denoted by  ,

whose columns are formed from the corresponding rows of .

 =

⎡⎣ 1 2 3 4 5

6 7 8 9 8

7 6 5 4 3

⎤⎦ =⇒  =

⎡⎢⎢⎢⎢⎣
1 6 7

2 7 6

3 8 5

4 9 4

5 8 3

⎤⎥⎥⎥⎥⎦

Example 10.6 Let  =

∙
1 2 0

3 0 1

¸
,  =

⎡⎣ 1 2

0 1

−2 4

⎤⎦ . Compute ,

() ,  and  .
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Solution:

 =

∙
1 2 0

3 0 1

¸⎡⎣ 1 2

0 1

−2 4

⎤⎦ = ∙ ¸

() =

∙ ¸

 =

⎡⎣ 1 3

2 0

0 1

⎤⎦∙ 1 0 −2
2 1 4

¸
=

⎡⎣ 7 3 10

2 0 −4
2 1 4

⎤⎦
 =

∙
1 0 −2
2 1 4

¸⎡⎣ 1 3

2 0

0 1

⎤⎦ = ∙ ¸

Theorem 10.7 Let  and  denote matrices whose sizes are appropriate for

the following sums and products. Then

a)
¡

¢
=  (i.e., the transpose of  is )

b) (+) =  +

c) For any scalar , () = 

d) () =  (I.e. the transpose of a product of matrices equals the

product of their transposes in reverse order. )

Example 10.8 Prove that () = _________.

Solution: By Theorem 10.7,

() = (()) =  ( ) =  ( ) =

_________ ¤
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The Inverse of a Matrix

11.1 Invertible Matrices

The inverse of a real number  is denoted by −1. For example, 7−1 = 17

and

7 · 7−1 = 7−1 · 7 = 1

An  ×  matrix  is said to be invertible if there is an  ×  matrix 

satisfying

 =  = 

where  is the ×  identity matrix. We call  the inverse of  .

FACT If  is invertible, then the inverse is unique.

Proof. Proof: Assume  and  are both inverses of . Then

 =  =  (_____) = (______)______ = ______ = 

So the inverse is unique since any two inverses coincide.

The inverse of  is usually denoted by −1.
We have

−1 = −1 = 

Not all  ×  matrices are invertible. A matrix which is not invertible is

sometimes called a singular matrix. An invertible matrix is called nonsin-

gular matrix.

Theorem 11.1 Let  =

∙
 

 

¸
. If −  6= 0, then  is invertible and

−1 =
1

− 

∙
 −
− 

¸


If −  = 0, then  is not invertible.
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Assume  is any invertible matrix and we wish to solve x = b. Then

_____x = _____b and so

x = _______ or x = _______.

Suppose w is also a solution to x = b. Then w = b and

_____w = _____b which means w =−1b.

So, w =−1b, which is in fact the same solution.
We have proved the following result:

Theorem 11.2 If  is an invertible × matrix, then for each b in R, the

equation x = b has the unique solution x = −1b.

Proof. Take any b in R. A solution exists because if −1b is substituted
for x, then x =

¡
−1b

¢
=
¡
−1

¢
b =b = b. So −1b is a solution. To

prove that the solution is unique, show that if u is any solution, then u in

fact, must be −1b. Indeed, if u = , we can multiply both sides by −1

and obtain

−1u =−1b u =−1b u =−1b

Example 11.3 Use the inverse of  =

∙ −7 3

5 −2
¸
to solve

−71 + 32 = 2

51 − 22 = 1


Solution: Matrix form of the linear system:

∙ −7 3

5 −2
¸ ∙

1
2

¸
=

∙
2

1

¸

−1 = 1
14−15

∙ −2 −3
−5 −7

¸
=

∙
2 3

5 7

¸


x =−1b =
∙
2 3

5 7

¸ ∙ ¸
=

∙ ¸
.

Theorem 11.4 Suppose  and  are invertible. Then the following results

hold:
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a) −1 is invertible and
¡
−1

¢−1
=  (i.e.  is the inverse of −1).

b)  is invertible and ()−1 = −1−1

c)  is invertible and
¡

¢−1

=
¡
−1

¢
Partial proof of part b:

()
¡
−1−1

¢
=  (_________)−1

=  (__________)−1 = _________ = _______

Similarly, one can show that
¡
−1−1

¢
() = .

Theorem 11.4, part b) can be generalized to three or more invertible matri-

ces:

()−1 = __________

Earlier, we saw a formula for finding the inverse of a 2×2 invertible matrix.
How do we find the inverse of an invertible  ×  matrix? To answer this

question, we first look at elementary matrices.

11.2 Elementary Matrices

Definition 11.5 An elementary matrix is one that is obtained by perform-

ing a single elementary row operation on an identity matrix.

Example 11.6 Let

1 =

⎡⎣ 1 0 0

0 2 0

0 0 1

⎤⎦  2 =
⎡⎣ 1 0 0

0 0 1

0 1 0

⎤⎦  3 =
⎡⎣ 1 0 0

0 1 0

3 0 1

⎤⎦

and  =

⎡⎣   

  

  

⎤⎦ 
Then 1, 2, and 3 are elementary matrices. Why? Observe the following

products and describe how these products can be obtained by elementary row
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operations on 

1 =

⎡⎣ 1 0 0

0 2 0

0 0 1

⎤⎦⎡⎣   

  

  

⎤⎦ =
⎡⎣   

2 2 2

  

⎤⎦

2 =

⎡⎣ 1 0 0

0 0 1

0 1 0

⎤⎦⎡⎣   

  

  

⎤⎦ =
⎡⎣   

  

  

⎤⎦

3 =

⎡⎣ 1 0 0

0 1 0

3 0 1

⎤⎦⎡⎣   

  

  

⎤⎦ =
⎡⎣   

  

3+  3+  3+ 

⎤⎦
If an elementary row operation is performed on an  ×  matrix , the

resulting matrix can be written as , where the × matrix  is created

by performing the same row operations on 

Elementary matrices are invertible because row operations are reversible. To

determine the inverse of an elementary matrix , determine the elementary

row operation needed to transform  back into  and apply this operation to

 to find the inverse.

For example,

3 =

⎡⎣ 1 0 0

0 1 0

3 0 1

⎤⎦ −13 =

⎡⎣ ⎤⎦

Example 11.7 Let  =

⎡⎣ 1 0 0

−3
2
0 1

2

0 1 0

⎤⎦  Then

1 =

⎡⎣ 1 0 0

0 2 0

0 0 1

⎤⎦⎡⎣ 1 0 0

−3
2
0 1

2

0 1 0

⎤⎦ =
⎡⎣ 1 0 0

−3 0 1

0 1 0

⎤⎦
2 (1) =

⎡⎣ 1 0 0

0 0 1

0 1 0

⎤⎦⎡⎣ 1 0 0

−3 0 1

0 1 0

⎤⎦ =
⎡⎣ 1 0 0

0 1 0

−3 0 1

⎤⎦
3 (21) =

⎡⎣ 1 0 0

0 1 0

3 0 1

⎤⎦⎡⎣ 1 0 0

0 1 0

−3 0 1

⎤⎦ =
⎡⎣ 1 0 0

0 1 0

0 0 1

⎤⎦
So
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321 = 3 .

Then multiplying on the right by −1, we get

321______ = 3______.

So

3213 = −1

The elementary row operations that row reduce  to I are the same ele-

mentary row operations that transform I into A
−1.

Theorem 11.8 An × matrix  is invertible if and only if  is row equiv-

alent to , and in this case, any sequence of elementary row operations that

reduces  to  will also transform  to −1.

11.3 Another View of Matrix Inversion

Denote the columns of  by e1  e. Then row reduction of [ ] to
£
 −1

¤
can be viewed as the simultaneous solution of the  systems

x = e1 x = e2  x = e (11.1)

where the “augmented columns” of these systems have all been placed next to

 to form £
 e1 e2  e

¤
= [ ] 

The equation −1 =  and the definition of matrix multiplication show that

the columns of −1 are precisely the solutions of the systems in (11.1). This
observation is useful because some applied problems may require finding only

one or two columns of −1. In this case, only the corresponding systems in
(11.1) need be solved.

11.4 Algorithm for finding −1

Place  and  side-by-side to form an augmented matrix [ ]. Then perform

row operations on this matrix (which will produce identical operations on 

and ). So by Theorem 11.8:
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[ ] will row reduce to
£
 −1

¤
or  is not invertible.

Example 11.9 Find the inverse of

 =

⎡⎣ 2 0 0

−3 0 1

0 1 0

⎤⎦ 
if it exists.

Solution:

[ ] =

⎡⎣ 2 0 0 1 0 0

−3 0 1 0 1 0

0 1 0 0 0 1

⎤⎦ ∼ · · · ∼
⎡⎣ 1 0 0 1

2
0 0

0 1 0 0 0 1

0 0 1 3
2
1 0

⎤⎦

So −1 =

⎡⎣ 1
2
0 0

0 0 1
3
2
1 0

⎤⎦
Order of multiplication is important!

Example 11.10 Suppose ,,, and  are invertible  ×  matrices and

 = ( − ). Solve for  in terms of  and 

Solution:

__________ = _____( − )_____

 −  = −1−1

 −  +____ = −1−1 +____

 = ____________________
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Characterizations of Invertible Matrices

12.1 The Invertible Matrix Theorem

Theorem 12.1 (The Invertible Matrix Theorem) Let  be a square ×
matrix. The the following statements are equivalent (i.e., for a given , they

are either all true or all false).

a.  is an invertible matrix.

b.  is row equivalent to 

c.  has  pivot positions.

d. The equation x = 0 has only the trivial solution.

e. The columns of  form a linearly independent set.

f. The linear transformation x→x is one-to-one.

g. The equation x = b has at least one solution for each b in R.

h. The columns of  span R.

i. The linear transformation x→x maps R onto R.

j. There is an ×  matrix  such that  = .

k. There is an ×  matrix  such that  = .

l.  is an invertible matrix.

First, we need some notation. If the truth of statement () always implies

that statement () is true, we say that () implies () and write () =⇒ ().

The proof will establish the “circle” of implications shown in Fig. 12.1. If any

one of these five statements is true, then so are the others. Finally, the proof

will link the remaining statements of the theorem to the statements in this

circle (see Figure 12.2).
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Fig. 12.1. A circle of implications

Proof. If statement () is true, then −1 works for  in (), so ()⇒ ().

Next, ()⇒ () as if x satisfies x = 0, then  = 0 = 0 and so x = 0

and x = 0. This shows that the equation x = 0 has no free variables.

Also, ()⇒ ().

Suppose for this that  is × and the equation x = 0 has only the trivial
solution. Then there are no free variables in this equation, and so  has  pivot

columns. Since  is square and the  pivot positions must be in different rows,

the pivots in an echelon form of  must be on the main diagonal. Hence  is

row equivalent to the  ×  identity matrix. If  is square and has  pivot

positions, then the pivots must lie on the main diagonal, in which case the

reduced echelon form of  is : Thus ()⇒ ().

Also, () ⇒ () by Theorem 11.8 in Chapter 11. This completes the circle

in Fig. 12.1.

Next, ()⇒ () because −1 works for .
Also, () ⇒ () as from  =  it follows that for any b ∈R, the

equation x = b has a solution (think about the equation x = b) .

Similarly ()⇒ () as  is row equivalent to . So () and () are linked to

the circle.

Further, (), (), and () are equivalent for any matrix. Thus, () and ()

are linked through () to the circle.

Since () is linked to the circle, so are () and (), because (), (), and ()

are all equivalent for any matrix .

Finally, () ⇒ () by Theorem 11.4 in Chapter 11, and () ⇒ () by the

same theorem

with  and  interchanged.
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Fig. 12.2. Links from the remaining statements of the theorem to the statements in

the circle presented in Figure 12.1

The power of the Invertible Matrix Theorem lies in the connections it pro-

vides among so many important concepts, such as linear independence of

columns of a matrix  and the existence of solutions to equations of the

form x = b. It should be emphasized, however, that the Invertible Matrix

Theorem applies only to square matrices. For example, if the columns of a 4×3
matrix are linearly independent, we cannot use the Invertible Matrix Theo-

rem to conclude anything about the existence or nonexistence of solutions to

equations of the form x = b.

Example 12.2 Use the Invertible Matrix Theorem to determine if  is in-

vertible, where

 =

⎡⎣ 1 −3 0

−4 11 1

2 7 3

⎤⎦ 

Solution:

 =

⎡⎣ 1 −3 0

−4 11 1

2 7 3

⎤⎦ ∼ · · · ∼
⎡⎣ 1 −3 0

0 −1 1

0 0 16

⎤⎦
| {z }

3 pivots positions
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Circle correct conclusion: Matrix  is / is not invertible. ¤

Example 12.3 Suppose  is a 5× 5 matrix and suppose there is a vector v
in R5 which is not a linear combination of the columns of  What can you

say about the number of solutions to x = 0?

Solution: Since v in R5 is not a linear combination of the columns of
, the columns of  do not ___________ R5.
So by the Invertible Matrix Theorem, x = 0 has

_________________________________________.

¤

12.2 Invertible Linear Transformations

For an invertible matrix ,

−1x = x for all x in R

and

−1x = x for all x in R

Picture:

Definition 12.4 A linear transformation  : R → R is said to be invert-

ible if there exists a function  : R → R such that

( (x)) = x for all x in R
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and

 ((x)) = x for all x in R

Theorem 12.5 Let  : R → R be a linear transformation and let  be the

standard matrix for  . Then  is invertible if and only if  is an invertible

matrix. In that case, the linear transformation  given by (x) = −1x is
the unique function satisfying

( (x)) = x for all x in R

and

 ((x)) = x for all x in R
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Introduction to Determinants

With each square matrix, it is possible to associate a real number called the

determinant of the matrix. The value of this number will tell us whether the

matrix is singular.

13.1 Preliminaries

Notation:  is the matrix obtained from matrix  by deleting the -th row

and -th column of .

 =

⎡⎢⎢⎣
1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

⎤⎥⎥⎦ 23 =

⎡⎢⎢⎣
⎤⎥⎥⎦

¤
Recall that det

∙
 

 

¸
= −  and we let det [] = .

Definition 13.1 For  ≥ 2, the determinant of an ×  matrix  = [ ]

is given by

det = 11 det11 − 12 det12 + · · ·+ (−1)1+ 1 det1

=

X
=1

(−1)1+ 1 det1

Example 13.2 Compute the determinant of

 =

⎡⎣ 1 2 0

3 −1 2

2 0 1

⎤⎦ 
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Solution:

det = 1det

∙ −1 2

0 1

¸
− 2 det

∙
3 2

2 1

¸
+ 0det

∙
3 −1
2 0

¸

= ______________________________ = ______

¤
Common notation: det

∙
3 2

2 1

¸
=

¯̄̄̄
3 2

2 1

¯̄̄̄


So ¯̄̄̄
¯̄ 1 2 0

3 −1 2

2 0 1

¯̄̄̄
¯̄ = 1 ¯̄̄̄ −1 2

0 1

¯̄̄̄
− 2

¯̄̄̄
3 2

2 1

¯̄̄̄
+ 0

¯̄̄̄
3 −1
2 0

¯̄̄̄

The (i j)-cofactor of  is the number  where  = (−1)+ det .¯̄̄̄
¯̄ 1 2 0

3 −1 2

2 0 1

¯̄̄̄
¯̄ = 111 + 212 + 013

(cofactor expansion across row 1)

Theorem 13.3 The determinant of an × matrix  can be computed by a

cofactor expansion across any row or down any column:

det = 11 + 22 + · · ·+  (expansion across row )

det = 11 + 22 + · · ·+  (expansion down column )

Use a matrix of signs to determine (−1)+⎡⎢⎢⎢⎣
+ − + · · ·
− + − · · ·
+ − + · · ·
...

...
...
. . .

⎤⎥⎥⎥⎦
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Exercise 13.1 Compute the determinant of  =

⎡⎣ 1 2 0

3 −1 2

2 0 1

⎤⎦ using co-
factor expansion down column 3.

Solution:

¯̄̄̄
¯̄ 1 2 0

3 −1 2

2 0 1

¯̄̄̄
¯̄ = 0 ¯̄̄̄ 3 −12 0

¯̄̄̄
− 2

¯̄̄̄
1 2

2 0

¯̄̄̄
+ 1

¯̄̄̄
1 2

3 −1
¯̄̄̄
= 1

¤

Example 13.4 Compute the determinant of

 =

⎡⎢⎢⎣
1 2 3 4

0 2 1 5

0 0 2 1

0 0 3 5

⎤⎥⎥⎦ 
Solution:

¯̄̄̄
¯̄̄̄ 1 2 3 4

0 2 1 5

0 0 2 1

0 0 3 5

¯̄̄̄
¯̄̄̄

= 1

¯̄̄̄
¯̄ 2 1 5

0 2 1

0 3 5

¯̄̄̄
¯̄− 0

¯̄̄̄
¯̄ 2 3 4

0 2 1

0 3 5

¯̄̄̄
¯̄+ 0

¯̄̄̄
¯̄ 2 3 4

2 1 5

0 3 5

¯̄̄̄
¯̄− 0

¯̄̄̄
¯̄ 2 3 4

2 1 5

0 2 1

¯̄̄̄
¯̄

= 1 · 2
¯̄̄̄
2 1

3 5

¯̄̄̄
= 14

Remark 13.5 Method of cofactor expansion is not practical for large matri-

ces.

Triangular Matrices:
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∗ ∗ · · · ∗ ∗
0 ∗ · · · ∗ ∗
0 0

. . . ∗ ∗
0 0 0 ∗ ∗
0 0 0 0 ∗

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
∗ 0 0 0 0

∗ ∗ 0 0 0

∗ ∗ . . . 0 0

∗ ∗ · · · ∗ 0

∗ ∗ · · · ∗ ∗

⎤⎥⎥⎥⎥⎥⎦
(upper triangular) (lower triangular)

Theorem 13.6 If  is a triangular matrix, then det  is the product of the

main diagonal entries of .

¯̄̄̄
¯̄̄̄ 2 3 4 5

0 1 2 3

0 0 −3 5

0 0 0 4

¯̄̄̄
¯̄̄̄ = _____________________ = −24

¤

13.2 Properties of Determinants

Theorem 13.7 Let  be a square matrix.

a) If a multiple of one row of  is added to another row of  to produce a

matrix , then det = det

b) If two rows of  are interchanged to produce , then det = −det.

c) If one row of  is multiplied by  to produce , then det =  · det.

Example 13.8 Compute ¯̄̄̄
¯̄̄̄ 1 2 3 4

0 5 0 0

2 7 6 10

2 9 7 11

¯̄̄̄
¯̄̄̄ 

Solution:
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¯̄̄̄
¯̄̄̄ 1 2 3 4

0 5 0 0

2 7 6 10

2 9 7 11

¯̄̄̄
¯̄̄̄ = 5

¯̄̄̄
¯̄ 1 3 4

2 6 10

2 7 11

¯̄̄̄
¯̄ = 5

¯̄̄̄
¯̄ 1 3 4

0 0 2

2 7 11

¯̄̄̄
¯̄

= 5

¯̄̄̄
¯̄ 1 3 4

0 0 2

0 1 3

¯̄̄̄
¯̄ = −5

¯̄̄̄
¯̄ 1 3 4

0 1 3

0 0 2

¯̄̄̄
¯̄ = _________ = ____

Theorem 13.7 (c) indicates that

¯̄̄̄
¯̄ ∗ ∗ ∗
−2 5 4

∗ ∗ ∗

¯̄̄̄
¯̄ = 

¯̄̄̄
¯̄ ∗ ∗ ∗
−2 5 4

∗ ∗ ∗

¯̄̄̄
¯̄.

Example 13.9 Compute ¯̄̄̄
¯̄ 2 4 6

5 6 7

7 6 10

¯̄̄̄
¯̄ 

Solution: ¯̄̄̄
¯̄ 2 4 6

5 6 7

7 6 10

¯̄̄̄
¯̄ = 2

¯̄̄̄
¯̄ 1 2 3

5 6 7

7 6 10

¯̄̄̄
¯̄ = 2

¯̄̄̄
¯̄ 1 2 3

0 −4 −8
0 −8 −11

¯̄̄̄
¯̄

= 2(−4)
¯̄̄̄
¯̄ 1 2 3

0 1 2

0 −8 −11

¯̄̄̄
¯̄ = 2(−4)

¯̄̄̄
¯̄ 1 2 3

0 1 2

0 0 5

¯̄̄̄
¯̄

= 2(−4)(1)(1)(5) = −40
¤

Example 13.10 Compute ¯̄̄̄
¯̄̄̄ 2 3 0 1

4 7 0 3

7 9 −2 4

1 2 0 4

¯̄̄̄
¯̄̄̄

using a combination of row reduction and cofactor expansion.
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Solution: ¯̄̄̄
¯̄̄̄ 2 3 0 1

4 7 0 3

7 9 −2 4

1 2 0 4

¯̄̄̄
¯̄̄̄ = −2

¯̄̄̄
¯̄ 2 3 1

4 7 3

1 2 4

¯̄̄̄
¯̄ = −2

¯̄̄̄
¯̄ 2 3 1

0 1 1

1 2 4

¯̄̄̄
¯̄

= 2

¯̄̄̄
¯̄ 2 3 1

1 2 4

0 1 1

¯̄̄̄
¯̄ = −2

¯̄̄̄
¯̄ 1 2 4

2 3 1

0 1 1

¯̄̄̄
¯̄ = −2

¯̄̄̄
¯̄ 1 2 4

0 −1 −7
0 1 1

¯̄̄̄
¯̄

= −2
¯̄̄̄
¯̄ 1 2 4

0 −1 −7
0 0 −6

¯̄̄̄
¯̄ = −2 (1) (−1) (−6) = −12

¤
Suppose  has been reduced to

 =

⎡⎢⎢⎢⎢⎢⎣
¥ ∗ ∗ · · · ∗
0 ¥ ∗ · · · ∗
0 0 ¥ · · · ∗
0 0 0

. . .
...

0 0 0 0 ¥

⎤⎥⎥⎥⎥⎥⎦
by row replacements and row interchanges, then

det =

⎧⎨⎩ (−1)
µ
product of

pivots in 

¶
when  is invertible

0 when  is not invertible

Theorem 13.11 A square matrix is invertible if and only if det 6= 0.

Theorem 13.12 If  is an ×  matrix, then det = det.

Partial proof

(2× 2 case)
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det

∙
 

 

¸
= −  and

det

∙
 

 

¸
= det

∙
 

 

¸
= − 

⇒ det

∙
 

 

¸
= det

∙
 

 

¸
.

(3× 3 case)

det

⎡⎣   

  

  

⎤⎦ = 

¯̄̄̄
 

 

¯̄̄̄
− 

¯̄̄̄
 

 

¯̄̄̄
+ 

¯̄̄̄
 

 

¯̄̄̄

det

⎡⎣   

  

  

⎤⎦ = 

¯̄̄̄
 

 

¯̄̄̄
− 

¯̄̄̄
 

 

¯̄̄̄
+ 

¯̄̄̄
 

 

¯̄̄̄

⇒ det

⎡⎣   

  

  

⎤⎦ = det
⎡⎣   

  

  

⎤⎦.
Implications of Theorem 13.12?

Theorem 13.7 still holds if the word row is replaced with ___________________.

Theorem 13.13 (Multiplicative Property) For × matrices  and ,
det () = (det) (det).

Example 13.14 Compute det3 if det = 5.

Solution:

det3 = det () = (det) (det) (det) 

= ______________ = ________

¤

Example 13.15 For  ×  matrices  and , show that  is singular if

det 6= 0 and det = 0.

Solution: Since

(det) (det) = det = 0
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and

det 6= 0
then det = 0. Therefore  is singular. ¤

13.3 Cramer’s rule

Cramer’s rule is needed in a variety of theoretical calculations. For instance, it

can be used to study how the solution of x = b is affected by changes in the

entries of b. However, the formula is inefficient for hand calculations, except

for 2× 2 or perhaps 3× 3 matrices
For any ×  matrix  and any b in R, let  (b) be the matrix obtained

from  by replacing column  by the vector b.

 (b) =

⎡⎢⎣ a1 · · · b · · · a
↑
col 

⎤⎥⎦
Theorem 13.16 (Cramer’s Rule) Let  be an invertible × matrix. For

any any b in R, the unique solution x of x =  has entries given by

x =
det (b)

det
  = 1 2   (13.1)

Proof. Denote the columns of  by a1 a and the columns of the  × 

identity matrix  by e1  e. If x = b, the definition of matrix multiplica-

tion shows that

(x) = 
£
a1 · · · x · · · a

¤
=

£
a1 · · · x · · · a

¤
=

£
a1 · · · b · · · a

¤
=  (b) 

By the multiplicative property of determinants,

(det) (det (x)) = det (b)

(see Fig. 13.1). The second determinant on the left is simply x. (Make a

cofactor expansion along the -th row.) Hence

(det)x = det (b)

This proves (13.1) because  is invertible and det 6= 0.
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Fig. 13.1. Cramer’s Rule explined.

The inverse of a matrix. Because the columns of −1 are solutions of
x = e, where e are basis vectors, Cramer’s rule together with the Laplace

expansion gives the formula:

£
−1

¤

= (−1)+ det()

det()
(13.2)

The matrix of cofactors  = (−1)+ det() is called the classical adjoint
1

(or adjugate matrix) of  denoted by adj. Note the change  → . Don’t

confuse the classical adjoint with the transpose  which is sometimes also

called the adjoint. Thus

−1 =
1

det()

⎡⎢⎢⎢⎣
11 21 · · · 1

12 22 · · ·
...

...

1 2 · · · 

⎤⎥⎥⎥⎦
Warning: Note that the subscripts on  are the reverse of ( ).]

1The term adjoint also has another meaning in advanced texts on linear transformations.
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14

Eigenvectors and Eigenvalues

14.1 An Introduction to Eigenproblems

The basic concepts presented here - eigenvectors and - are useful throughout

pure and applied mathematics. Eigenvalues are also used to study difference

equations and continuous dynamical systems. They provide critical informa-

tion in engineering design, and they arise naturally in such fields as physics

and chemistry.

Definition 14.1 An eigenvector of an ×  matrix  is a nonzero vector

x such that x = x for some scalar . A scalar  is called an eigenvalue

of  if there is a nontrivial solution x of x = x; such an x is called an

eigenvector corresponding to .

Example 14.2 Let  =

∙
0 −2
−4 2

¸
, u =

∙
1

1

¸
, and v =

∙ −1
1

¸
. Exam-

ine the images of u and v under multiplication by .

Solution:

u =

∙
0 −2
−4 2

¸ ∙
1

1

¸
=

∙ −2
−2

¸
= −2

∙
1

1

¸
= −2u

v =

∙
0 −2
−4 2

¸ ∙ −1
1

¸
=

∙ −2
6

¸
6= v

a) u is called an eigenvector of .

b) v is not an eigenvector of  since v is not a multiple of v (see Figure

14.1).

Example 14.3 Show that 4 is an eigenvalue of  =

∙
0 −2
−4 2

¸
and find

the corresponding eigenvectors.
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Fig. 14.1. u = −2u, but v 6= v

Solution: Scalar 4 is an eigenvalue of  if and only if x = 4x has a

nontrivial solution.

x−4x = 0
x−4 (____)x = 0

(−4)x = 0
To solve (−4)x = 0, we need to find −4 first:

−4 =
∙

0 −2
−4 2

¸
−
∙
4 0

0 4

¸
=

∙ −4 −2
−4 −2

¸
Now solve (−4)x = 0:∙ −4 −2 0

−4 −2 0

¸
∼
∙
1 1

2
0

0 0 0

¸
⇒ x =

∙ −1
2
2

2

¸
= 2

∙ −1
2

1

¸


Each vector of the form 2

∙ −1
2

1

¸
is an eigenvector corresponding to the

eigenvalue  = 4 (see Figure 14.2.) ¤
Warning: The method just used to find eigenvectors cannot be used to find

eigenvalues.

Definition 14.4 The set of all solutions to (−)x = 0 is called the eigenspace
of  corresponding to .
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Fig. 14.2. Eigenspace for  = 4

Example 14.5 Let

 =

⎡⎣ 2 0 0

−1 3 1

−1 1 3

⎤⎦ 
An eigenvalue of  is  = 2. Find a basis for the corresponding eigenspace.

Solution:

−2 =
⎡⎣ 2 0 0

−1 3 1

−1 1 3

⎤⎦−
⎡⎣ ___ 0 0

0 ___ 0

0 0 ___

⎤⎦

=

⎡⎣ 2−___ 0 0

−1 3−___ 1

−1 1 3−___

⎤⎦ =
⎡⎣ ___ 0 0

−1 ___ 1

−1 1 ___

⎤⎦
Augmented matrix for (−2)x = 0:⎡⎣ 0 0 0 0

−1 1 1 0

−1 1 1 0

⎤⎦ ∼
⎡⎣ 1 −1 −1 0

0 0 0 0

0 0 0 0

⎤⎦
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x =

⎡⎣ 1
2
3

⎤⎦ =
⎡⎣ 2 + 3

2
3

⎤⎦ = ____
⎡⎣ 11
0

⎤⎦+____
⎡⎣ 10
1

⎤⎦
So a basis for the eigenspace corresponding to  = 2 is

⎧⎨⎩
⎡⎣ 11
0

⎤⎦ 
⎡⎣ 10
1

⎤⎦⎫⎬⎭
x3 x3

Effects of Multiplying Vectors in Eigenspaces for  = 2 by 

Example 14.6 Suppose  is eigenvalue of . Determine an eigenvalue of

2 and 3. In general, what is an eigenvalue of ?

Solution: Since  is eigenvalue of , there is a nonzero vector x such that

x = x.

Then

___x = ___x

2x = x

2x = ___x

2x = 2x

Therefore 2 is an eigenvalue of 2.

Show that 3 is an eigenvalue of 3:
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___2x = ___2x

3x = 2x

3x = 3x

Therefore 3 is an eigenvalue of 3.

In general, ______ is an eigenvalue of .

Theorem 14.7 The eigenvalues of a triangular matrix are the entries on its

main diagonal.

Proof for the 3×3 Upper Triangular Case: Let

 =

⎡⎣ 11 12 13
0 22 23
0 0 33

⎤⎦ 
and then

−  =

⎡⎣ 11 12 13
0 22 23
0 0 33

⎤⎦−
⎡⎣  0 0

0  0

0 0 

⎤⎦
=

⎡⎣ 11 −  12 13
0 22 −  23
0 0 33 − 

⎤⎦.
By definition,  is an eigenvalue of  if and only if (− )x = 0 has

a nontrivial solution. This occurs if and only if (− )x = 0 has a free

variable.

When does this occur?

Theorem 14.8 If v1    v are eigenvectors that correspond to distinct eigen-

values 1      of an  ×  matrix , then {v1    v} is a linearly inde-
pendent set.

Proof. Suppose {v1    v} is linearly dependent. Since v1 is nonzero, one
of the vectors in the set is a linear combination of the preceding vectors. Let

 be the least index such that v+1 is a linear combination of the preceding

(linearly independent) vectors. Then there exist scalars 1   such that

1v1 +  v = v+1 (14.1)

Multiplying both sides of (14.1) by  and using the fact that  = v for

each , we obtain

1v1 + + v = v+1
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11v1 +  v = +1v+1 (14.2)

Multiplying both sides of (14.1) by +1 and subtracting the result from (14.2),

we have

1 (1 − +1)v1 +   ( − +1)v = 0 (14.3)

Since {v1    v} is linearly independent, the weights in (14.3) are all zero.
But none ofthe factors ( − +1) are zero, because the eigenvalues are dis-

tinct. Hence  = 0 for  = 1  . But then (14.1) says that v+1 = 0, which

is impossible. Hence {v1    v} cannot be linearly dependent and therefore
must be linearly independent.
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The Characteristic Equation

15.1 Review

 x =  x

Find eigenvectors x by solving (− )x = 0.

How do we find the eigenvalues ?

x must be nonzero

⇓
(− )x = 0 must have nontrivial solutions

⇓
(− ) is not invertible

⇓
det (− ) = 0

(called the characteristic equation)

Solve det (− ) = 0 for  to find the eigenvalues.

Characteristic polynomial: det (− )

Characteristic equation: det (− ) = 0

Example 15.1 Find the eigenvalues of

 =

∙
0 1

−6 5

¸


Solution: Since

−λ =
∙

0 1

−6 5

¸
−
∙
 0

0 

¸
=

∙ − 1

−6 5− 

¸


the equation det (−λ) = 0 becomes
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− (5− ) + 6 = 0

2 − 5+ 6 = 0
Factor:

(− 2) (− 3) = 0

So the eigenvalues are 2 and 3. ¤
For a 3× 3 matrix or larger, recall that a determinant can be computed by

cofactor expansion.

Example 15.2 Find the eigenvalues of

 =

⎡⎣ 1 2 1

0 −5 0

1 8 1

⎤⎦ 
Solution:

−λ =
⎡⎣ 1−____ 2 1

0 −5−____ 0

1 8 1−____

⎤⎦

det (−λ) =
¯̄̄̄
¯̄ 1−  2 1

0 −5−  0

1 8 1− 

¯̄̄̄
¯̄ = (−5− )

¯̄̄̄
1−  1

1 1− 

¯̄̄̄

= (−5− )
h
(1− )2 − 1

i
= (−5− )

£
1− 2+ 2 − 1¤

= (−5− )
£−2+ 2

¤
= − (5 + ) [−2 + ] = 0

⇒  = −5 0 2
¤

Theorem 15.3 (The Invertible Matrix Theorem - continued) Let  be an

×  matrix. Then  is invertible if and only if:
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s) The number 0 is not an eigenvalue of 

t) det 6= 0

Recall that if  is obtained from  by a sequence of row replacements or

interchanges, but without scaling, then det = (−1) det, where  is the
number of row interchanges.

Suppose the echelon form  is obtained from  by a sequence of row re-

placements or interchanges, but without scaling.

 ∼  =

⎡⎢⎢⎢⎢⎢⎣
11 12 13 · · · 1
0 22 23 · · · 2
0 0 33 · · · 3
...

...
...

. . .
...

0 0 0 0 

⎤⎥⎥⎥⎥⎥⎦
The determinant of , written det, is defined as follows:

det =

⎧⎨⎩ (−1) ·
µ
product of

pivots in 

¶
, when  is invertible

0, when  is not invertible

( is the number of row interchanges)

Example 15.4 Find the eigenvalues of

 =

⎡⎣ 3 2 3

0 6 10

0 0 2

⎤⎦ 
Solution:

det (− ) = det

⎡⎣ 3−  2 3

0 6−  10

0 0 2− 

⎤⎦
Characteristic equation:

( ) ( ) ( ) = 0

eigenvalues: _____ _____ _____

¤

Definition 15.5 The (algebraic) multiplicity of an eigenvalue is its mul-

tiplicity as a root of the characteristic equation.
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Example 15.6 Find the characteristic polynomial of

 =

⎡⎢⎢⎣
2 0 0 0

5 3 0 0

9 1 3 0

1 2 5 −1

⎤⎥⎥⎦
and then find all the eigenvalues and the algebraic multiplicity of each eigen-

value.

Solution:

det (− ) =

¯̄̄̄
¯̄̄̄ 2−  0 0 0

5 3−  0 0

9 1 3−  0

1 2 5 −1− 

¯̄̄̄
¯̄̄̄

= (2− ) (3− ) (3− ) (−1− ) = 0

eigenvalues: _____ _____ _____

¤

15.2 Similarity

Numerical methods for finding approximating eigenvalues are based upon The-

orem 15.7 to be described shortly. ??

For  ×  matrices  and , we say the  is similar to  if there is an

invertible matrix  such that

−1 =  or equivalently  = −1

Theorem 15.7 If  ×  matrices  and  are similar, then they have the

same characteristic polynomial and hence the same eigenvalues (with the same

multiplicities).

Proof. If  = −1 , then

det ( − ) = det
£
−1 − −1

¤
= det

£
−1 (− )

¤
= det−1 · det (− ) · det = det (− ) 
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15.3 Application to Markov Chains

Example 15.8 Consider the migration matrix  =

∙
95 90

05 10

¸
and define

x+1 =x. It can be shown that

x0x1x2   

converges to a steady state vector x =

∙
1
2
1
2

¸
. Why?

The answer lies in examining the corresponding eigenvectors.

Solution: First we find the eigenvalues:

det ( − ) = det

µ∙
95−  90

05 10− 

¸¶
= 2 − 1 05+ 005

So solve

2 − 1 05+ 005 = 0
By factoring

 = 005  = 1

It can be shown that the eigenspace corresponding to  = 1 is span{v1}
where v1 =

∙
1

1

¸
and the eigenspace corresponding to  = 005 is span{v2}

where v2 =

∙ −1
1

¸


Note that

v1 = v1,

and so

∙
1
2
1
2

¸
is our steady state vector.

Then for a given vector x0,

x0 = 1v1 + 2v2

x1 =x0 = (1v1 + 2v2) = 1v1 + 2v2 = 1v1 + 2 (005)v2
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x2 =x1 = (1v1 + 2 (005)v2) = 1v1 + 2 (005)v2 =

1v1 + 2 (005)
2
v2

and in general

x = 1v1 + 2 (005)
 v2

and so lim
→∞

x = lim
→∞

³
1v1 + 2 (005)


v2

´
= 1v1

and this is the steady state when 1 =
1
2
.
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Appendixes

16.1 Greek letters used in mathematics, science, and
engineering

The Greek letter forms used in mathematics are often different from those used

in Greek-language text: they are designed to be used in isolation, not connected

to other letters, and some use variant forms which are not normally used in

current Greek typography. The table below shows Greek letters rendered in

TEX

Table 16.1. Greek letters used in mathematics

 alpha  nu

 beta  Ξ xi

 Γ gamma  Π pi

 ∆ delta  rho

 epsilon  Σ sigma

 zeta  tau

 eta  upsilon

 Θ theta  Φ phi

 iota  chi

 kappa  Ψ psi

 Λ lambda  Ω omega

 mu † dagger

TEXis a typesetting system designed and mostly written by Donald Knuth

at Stanford and released in 1978.

Together with the Metafont language for font description and the Computer

Modern family of typefaces, TeX was designed with two main goals in mind:

to allow anybody to produce high-quality books using a reasonably minimal

amount of effort, and to provide a system that would give exactly the same

results on all computers, now and in the future.
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associative laws, 13
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binomial formula, 17
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classical adjoint, 149

cofactor, 142

cofactor expansion, 142

column vector, 58

commutative laws, 13

complex conjugate, 22

complex plane, 11
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conjugate, 22

consistent system, 72

consistent system of linear equations,
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Cramer’s rule, 148

de Moivre’s formula, 34

determinant, 141, 159

directed distance, 25

discriminant of the quadratic equa-

tion, 10

distributive law, 13

echelon form, 63

eigenspace, 152

eigenvalue, 151

eigenvector, 151

elementary matrix, 131

elementary row operations, 57

equal complex numbers, 11

equivalent systems of linear equa-

tions, 55

Euler’s formula, 30

fractals, 48

free variable, 66

Free variables, 72

Fundamental Theorem of Algebra,

11, 45

general solution of the system, 69,

71

hyperplane, 52

imaginary axis, 11, 17

imaginary part of z, 11

inconsistent system of linear equa-

tions, 55

interchange operation, 57

inverse of a matrix, 129

invertible linear transformation, 138
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invertible matrix, 129

Julia Set, 49

leading entry, 63

leading variables, 71

line, 52

linear combination, 81

linear combination of vectors, 77

linear dependece, 105

linear equation, 51

linear independece, 105

linear system, 51

matrix multiplication, 124

modulus of a complex number, 19

multiplicative inverse, 14

non-leading variables, 71

nonsingular matrix, 129

origin point, 25

Parallelogram rule for addition, 78

particular solution of the system,

71

perfect square, 10

pivot, 64

pivot column, 64

pivot position, 64

plane, 52

polar axis, 25

polar coordinate system, 25

polar coordinates, 25

polar form, 30

pole, 25

principal root, 40

principal value of argument, 30

product of two complex numbers,

11

pure imaginary numbers, 11

quadratic equation, 9

rank of a matrix, 66

real axis, 17

real part of z, 11

reduced echelon form, 63

replacement operation, 57

row echelon form, 63

row equivalent matrices, 57

row vector, 58

rref, 63

scaling operation, 57

set of integers, 9

set of natural numbers, 9

set of rational numbers, 9

set of real numbers, 10

singular matrix, 129

solution of a linear system, 51

spanning set, 77

sum of two complex numbers, 11

system of linear equations, 51

triangle inequality, 20

unique solution, 72

vector, 77


