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Preface

This is the complementary text to my Calculus Lecture Notes for the Elec-

tronics and Telecommunication students at Technical University in Poznań.

It is an outgrowth of my teaching of Calculus  at Technical University of

Poznań (for the first year students).

The goal of this text is to help students learn to use the most difficult

parts of calculus intelligently in order to be able to solve a wide variety of

mathematical and physical problems. The exercise sets have been carefully

constructed to be of maximum use to the students.

Prerequisite material from algebra, trigonometry, and analytic geometry is

consistent with the Polish standards. Students are advised to assess themselves

and to take a pre-calculus course if they lack the necessary background.

The author de-emphasize the theory of limits, leaving a detailed study to

the end of the course, after the students have mastered the fundamentals of

calculus-differentiation and integration.

Computer and calculator applications are used for motivation and to illus-

trate the numerical content of calculus. In my view the ability to visualize

basic graphs and to interpret them mentally is very important in calculus and

in subsequent mathematics courses.

This text leaves out the less important parts of the course because of the

limited capacity of the book.

Misprints are a plague to authors (and readers) of mathematical textbooks.

The author have made a special effort to weed them out, and we will be grateful

to the readers who help us eliminate any that remain.

Andrzej Máckiewicz

Poznán, September 2014
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1

Logic and techniques of proof (Exercises)

1.1 Practice Problems

Example 1 Prove that  −  has −  as a factor for all positive integers

.

Solution: The statement is true for  = 1 since 1 − 1 = − . Assume

the statement true for  = , i.e., assume that  −  has −  as a factor.

Consider

+1 − +1 = +1 −  +  − +1

= (− ) + ( − )

The first term on the right has  −  as a factor, and the second term on

the right also has  −  as a factor because of the above assumption. Thus

+1 − +1 has −  as a factor if  −  does. ¤

Example 2 If  ∈ Z and  ≥ 0, then P
=0 ·! = (+ 1)!− 1

Solution: We will prove this with mathematical induction.

1) If  = 0, this statement is

0X
=0

·! = (0 + 1)!− 1

Since the left-hand side is 0·0! = 0, and the right-hand side is 1!− 1 = 0
the equation

P0
=0 ·! = (0 + 1)!− 1 holds, as both sides are zero.

2) Consider any integer  ≥ 0. We must show that  implies +1. That is,
we must show that

X
=0

·! = ( + 1)!− 1

implies
+1X
=0

·! = (( + 1) + 1)!− 1
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We use direct proof. Suppose
P

=0 ·! = ( + 1)!− 1. Observe that
+1X
=0

·! =

X
=0

·! + ( + 1) ( + 1)!

= (( + 1)!− 1) + ( + 1) ( + 1)!
= (1 + ( + 1)) ( + 1)!− 1
= ( + 2)!− 1
= (( + 1) + 1)!− 1

Therefore
+1X
=0

·! = (( + 1) + 1)!− 1

It follows by induction that

X
=0

·! = (+ 1)!− 1

for every integer  ≥ 0.

Example 3 If  ∈ N, then (1 + ) ≥ 1 +  for all all  ∈ R with   −1.
Solution: We will prove this with mathematical induction.

1) For the basis step, notice that when  = 1 the statement is (1+)1 ≥ 1+1 
, and this is true because both sides equal 1 + 

2) Assume that for some  ≥ 1, the statement (1 + ) ≥ 1 +  is true for

all all  ∈ R with   −1. From this we need to prove

(1 + )+1 ≥ 1 + ( + 1)

Now, 1 +  is positive because   −1, so we can multiply both sides
of (1 + ) ≥ 1 +  by (1 + ) without changing the direction of the

inequality ≥.

(1 + )(1 + ) ≥ (1 + )(1 + )

(1 + )+1 ≥ 1 + + + 2

(1 + )+1 ≥ 1 + ( + 1)+ 2

The above term 2 is positive, so removing it from the right-hand side

will only make that side smaller. Thus we get (1+)+1 ≥ 1+ (+1)
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1.2 Exercises

Exercise 1.1 The Fibonacci numbers {}∞=1 are defined by 1 = 2 = 1

and

+1 =  − −1  ≥ 2
Prove by induction that

 =

¡
1 +
√
5
¢
+
¡
1−√5¢

2
√
5

  ≥ 1

Exercise 1.2 Thus, the first several Fibonacci numbers are 1 = 1; 2 = 1;

3 = 2; 4 = 3; 5 = 5; 6 = 8; 7 = 13; 8 = 21; et cetera. Use mathemat-

ical induction to prove the following formula involving Fibonacci numbers.

X
=1

()
2 =  · +1

Exercise 1.3 Let the numbers 0 1 2  be defined by

0 = 1 1 = 3   = 4(−1 − −2) for n ≥ 2

Show by induction that  = 2
−1(+ 2) for all  ≥ 0

Exercise 1.4 Prove by induction that

(1 + 2 + + )
2 =

X
=1

2 + 2(12 + 13 + + 1 + 23

+24 + 2 + 34 + 35 + + −1)

Exercise 1.5 Prove by induction that

sin+ sin 3+ sin 5+ + sin(2− 1) = 1− cos 2
2 sin

 for  ≥ 1

HINT: You will need trigonometric identities that you can derive from the iden-

tities

cos(− ) = cos cos + sin sin

cos(+ ) = cos cos − sin sin

Take these two identities as given.
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Exercise 1.6 Show thats
2 +

r
2 +

q
2 + 

√
2 = 2 cos



2+1

where there are  2 in the expression on the left. HINT: We know that for any

angle  we have:

cos  =

r
1 + cos 2

2


Exercise 1.7 Prove by induction that, for all  6= 1

1 + 2+ 32 + + −1 =
+1 − (+ 1) + 1

(− 1)2 

Exercise 1.8 Prove by induction that for any positive integer 

1 +
1

2
+
1

3
+
1

4
+
1

5
+ +

1

2−1
≥ 1
2
(+ 1)

HINT: Compare with Example (??).

Exercise 1.9 A “postage stamp problem” is a problem that (typically) asks

us to determine what total postage values can be produced using two sorts of

stamps. Suppose that you have 3c/ stamps and 7c/ stamps, show (using strong

induction) that any postage value 12c/ or higher can be achieved. That is,

for any  ∈ N  ≥ 12⇒ ∃   ∈ N  = 3+ 7

Show that any integer postage of 12c/ or more can be made using only 4c/ and

5c/ stamps.

Exercise 1.10 Suppose that  and  are integers, with 0 ≤  ≤ . The

binomial coefficient
¡



¢
is the coefficient of  in the expansion of (1 + );

that is,

(1 + ) =

X
=0

µ




¶


From this definition it follows immediately thatµ


0

¶
=

µ




¶
= 1  ≥ 0

For convenience we defineµ


−1
¶
=

µ


+ 1

¶
= 0  ≥ 0
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a) Show that µ
+ 1



¶
=

µ




¶
+

µ


− 1
¶
 0 ≤  ≤ 

and use this to show by induction on  thatµ




¶
=

!

! (−)!
 0 ≤  ≤ 

b) Show that
X

=0

(−1)
µ




¶
= 0 and

X
=0

µ




¶
= 2

c) Show that

(+ ) =

X
=0

µ




¶
−

(This is the binomial theorem.)

HINT: This is certainly true for  = 1, since

(+ )1 = +  =

µ
1

0

¶
+

µ
1

1

¶


When  =  + 1 write

(+ )+1 = (+ ) (+ )

= (+ )

X
=0

µ




¶
−

=

X
=0

µ




¶
+1− +

X
=0

µ




¶
+1−

and replace  by  − 1 in the last sum to obtain

(+ )+1 = +1 +

X
=1

∙µ




¶
+

µ


 − 1
¶¸

+1− + +1

Finally, show how the right-hand side here becomes

+1 +

X
=1

µ
 + 1



¶
+1− + +1 =

+1X
=0

µ
 + 1



¶
+1− 
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The identity µ




¶
+

µ


 − 1
¶
=

µ
 + 1



¶
( ≥  ≥ 1)

is usually called the Pascal Triangle ldentity, since in the triangle of

numbers
1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

each “interior” entry is the sum of the two entries above it, and since

the -th row turns out to be
¡

0

¢

¡

1

¢
 

¡



¢
 Thus, if for example  = 5

then directly from the Pascal’s triangle we have

(+ )5 = 5 + 54 + 1032 + 1023 + 54 + 5

Exercise 1.11 Show that
√
3 and

3
√
2 are not rational.
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Introduction to limits (Exercises)

2.1 Basic concepts

Suppose that a function  has the graph shown below.

Our goal is to describe the behavior of  in the vicinity of  = 1 in a concise

manner. Notice that (1) = 1 Yet, if  ≈ 1 then () ≈ 2

So, the number 2 is crucial in describing the behavior of  near 1We say that

2 is the limit of () as  approaches 1 This is written compactly as

lim
→1

() = 2
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To be more precise, the reason that the limit is 2 as  approaches 1 is that

for any interval centered at 2 in the -axis (no matter how small) the number

() will be in that interval for all  other than 1 in some significantly small

interval centered at  = 1 in the -axis.

Also we point out, that lim→1 () has nothing to do with the value of 
at 1We can change (1) to any number we want, or even leave it undefined

and the limit remains 2 Notice, that if lim→1 () = 2 is different than (1)

there is a "hole" in the graph at (1 2)

If (1) were equal to 2, the "hole" would be filled. Value and limit coincide,

whenever the graph of  is continuous. This idea the basis of the mathematical

definition of continuity (that will be presented later).

Let us look at another example. Again suppose that () has the graph

shown below. Here the interesting behavior of  is in the vicinity of  = 0

Notice that (0) = 2 If  ≈ 0 and   0 then () ≈ 2 But if  ≈ 0 and

  0 then () ≈ 1. Therefore, the limit of () as  approaches 0 does not
exist.
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However, we can say that 2 is the limit of () as  approaches 0 from the left

and express this by writing

lim
→0−

() = 2

We can also say, that 1 is is the limit of () as  approaches 0 from the right

and express this by writing

lim
→0+

() = 2

Important fact:

lim→ () exists if and only if

lim→− () and lim→+ ()

both exist and are equal.

If it happens, the common value of the one-sided limits is lim→ ()

Another example. Suppose, that () has the graph shown below.
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Here the interesting behavior of  is in the vicinity of  = 2 Notice, that (2)

is undefined and the line  = 2 is a vertical asymptote. If  ≈ 2 and   2,

then () is large and positive. But if  ≈ 2 and   2, then () is large and

negative. Therefore, the limit of () as  approaches 2 does not exist. In fact,

neither of the one sided limits exist. However, we can describe the nature of

the vertical asymptote writing:

lim
→2−

() = +∞ and lim
→2+

() = −∞

2.2 Examples

Example 4 Given the function () whose graph is below, determine the fol-

lowing:

a) (1) b) lim→1− () c) lim→1+ () d) lim→1 ()
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Solution:

a) (1) = 1 b) lim→1− () = 2

c) lim→1+ () = 0 d) lim→1 () does not exist.

¤

Example 5 Given the function  whose graph is below, determine the follow-

ing:

a) (2) b) lim→2− () c) lim→2+ () d) lim→2 ()

Solution:

a) (2) = 0 b) lim→2− () = 0

c) lim→2+ () = −∞ d) lim→2 () does not exist.

¤

Example 6 Sketch the graph of a function  defined for −1    3 for

which the following are true:

lim→−1+ () = 2 (0) = 1

lim→−0 () = 0 (1) = 0

lim→−1− () =∞ lim→−1+ () = 1
(2) = 2 lim→−2+ () = 0
lim→−3− () = 1
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Solution: Here is a possible answer:

There are many other ways this graph could been drawn. Other possibilities

need only indicate the correct values at, and limiting behavior near  = −1
0 1 2 and 3.

2.3 Exercises

Exercise 2.1 Refer to the accompanying figure and determine the following:

a) lim→2− () b) lim→2 () c) lim→2+ () d) lim→5 ()
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Exercise 2.2 Determine the one-sided limits of the function () in figure

below, at the points  = 1 3 5 6

Exercise 2.3 Use the graph of the function () to find the following

a) lim→2− () b) lim→2 () c) lim→2+ () d) (2)
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3

Calculation of limits (Exercises)

3.1 Some basic, general facts about limits

Some basic, general facts about limits are helpful in the calculation of specific

limits.

Assume, that lim→ () and lim→ () each exists.

Then the following are true:

1. lim→ (() + ()) = lim→ () + lim→ ()

2. lim→ () =  lim→ ()

3. lim→ (()()) = (lim→ ()) (lim→ ())

4. If lim→ () 6= 0 then lim→
()

()
=
lim→ ()

lim→ ()

5. If lim→ () 6= 0 and lim→ () = 0 then lim→
()

()
does not exist

6. If lim→ () = lim→ () = 0 then lim→
()

()
may or may not

exist

While these are stated in terms of the limit as  approaches 

they are also true for one-sided limits as  approaches 

3.2 Practice Problems

We have the following limits regarding two specific simple functions

lim→  =  and lim→  = 
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Example 7 (a typical polynomial)

lim
→2

¡
23 + 3+ 5

¢
= lim

→2
23 + lim

→2
3+ lim

→2
5

= 2 lim
→2

3 + 3 lim
→2

+ lim
→2

5

= 2
³
lim
→2


´3
+ 3 lim

→2
+ lim

→2
5

= 2 (2)3 + 3 · 2 + 5
= 27

Notice that the result is simply the value of the polynomial at  = 2. In fact,

this always happens with polynomials, that is,

If () is a polynomial and  is any real number, then

lim→ () = ()

¤

Example 8 (A rational function whose dominator does not approach zero).

lim
→3

22 − + 2

2 + 1
=

lim→3
¡
22 − + 2

¢
lim→3 (2 + 1)

=
2 (3)2 − (3) + 2

(3)2 + 1

17

10


Again notice, that the result is simply the value of the function at  = 3 In fact,

this always happens with rational functions, provided that the denominator

isn’t zero,

If () and () are polynomials, and () 6= 0 then
lim→

()

()
=

()

()


¤

Example 9 (A rational function whose dominator approaches zero while its

numerator does not).

lim
→1

22 − + 2

3 − 1 does not exist,

because lim→1
¡
3 − 1¢ = 0 while lim→1

¡
22 − + 2

¢
= 3
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Can we say something about one-sided limits?

lim
→1−

22 − + 2

3 − 1 = −∞

as the nominator is close to 3 near 1, but the denominator ≈ 0 and  0

Similarly,

lim
→1+

22 − + 2

3 − 1 = +∞

¤

Recall the last of the six facts with which we began:

6. If lim→ () = lim→ () = 0 then lim→
()

()
may or may not exist.

It is the situation that is the most interesting and, in fact, is the main

reason we are discussing limits at all !

Computation of limits in this "

µ
0

0

¶
" case often involves use of the following

additional fact about limits:

7. If () = () for all  near but not equal to  then

lim
→

() = lim
→

()

Here, think of () as a "simplified" version of () whose limit as →  is

easy to determine, such as polynomial or a rational function whose numerator

and denominator do not both approach 0

Example 10 Find

lim
→1

3 − 1
2 − 1 

Solution:

3 − 1
2 − 1 =

(− 1) ¡+ 2 + 1
¢

(− 1) (+ 1)

=

¡
+ 2 + 1

¢
(+ 1)

for  6= 1

So,

lim
→1

3 − 1
2 − 1 = lim

→1

¡
+ 2 + 1

¢
(+ 1)

=
12 + 1 + 1

1 + 1
=
3

2


The graph of the function 3−1
2−1 is presented in Figure 3.1. Notice the "hole"

in it at (1 32) ¤



26 3. Calculation of limits (Exercises)

Fig. 3.1. The graph of () = 3−1
2−1 for  close to 1

Example 11 Find lim→0
(+ 3)2 − 9




Solution:

(+ 3)2 − 9


=
2 + 6


= + 6 for  6= 0

So,

lim
→0

(+ 3)2 − 9


= lim
→0

(+ 6) = 6

The graph of the function
(+ 3)2 − 9


is presented in Figure 3.2. Notice the

"hole" in it at (0 6) ¤

Example 12 Find lim→2
12− 1
− 2 

Solution:

12− 1
− 2 =

− 2
2(− 2)

=
1

2
for  6= 0

Hence,

lim
→2

12− 1
− 2 = lim

→2
1

2
=
1

4
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Fig. 3.2. The graph of the function
(+ 3)2 − 9


in the vicinity of  = 0

¤

Example 13 Find lim→2
2 − − 2
2 − 4+ 4

2 − − 2
2 − 4+ 4 =

(− 2)(+ 1)
(− 2)2

=
+ 1

− 2 for  6= 2

Hence

lim
→2

2 − − 2
2 − 4+ 4 does not exist.

However,

lim
→2−

2 − − 2
2 − 4+ 4 = −∞

and

lim
→2+

2 − − 2
2 − 4+ 4 =∞

The graph of the function
2 − − 2
2 − 4+ 4 is presented in Figure 3.3. It has vertical

asymptote at  = 2

¤
For the next example, we will need an additional continuity property

lim→

√
 =
√
 for all   0 and lim→0+

√
 = 0
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Fig. 3.3. The graph of the function

Example 14 Find lim→1
√
−1
−1 

Solution:

√
− 1
− 1 =

√
− 1
− 1 ·

√
+ 1√
+ 1

=
1√
+ 1

for  6= 1

So,

lim
→1

√
− 1
− 1 = lim

→1
1√
+ 1

=
1

2

¤

3.3 Some Trigonometric Limits

3.3.1 Continuity of sine and cosine

For all real numbers ,

lim→ sin = sin  and lim→ cos = cos 

Exercise 3.1 Find lim→0
sin+ 2cos+ cos2 

sin+ cos 2


Solution: As

sin 0 + cos 2 · 0 = 1 6= 0
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lim
→0

sin+ 2cos+ cos2 

sin+ cos 2
=

lim→0
¡
sin+ 2cos+ cos2 

¢
lim→0 (sin+ cos 2)

=
sin 0 + 2 cos 0 + cos2 0

sin 0 + cos 2 · 0
= 3

¤

3.3.2 Tangent

If  is not an odd multiple of 2 then cos  6= 0 and so

lim
→

tan = lim
→

sin

cos
=
sin 

cos 
= tan 

Suppose that  is an odd multiple of 2 Then sin  6= 0 and cos  = 0 so

lim→ tan does not exist.

If  ≈  and    then sin and cos have the same sign; so tan  0

Therefore

lim
→−

tan = lim
→−

sin

cos
=∞

If  ≈  and    then sin and cos have opposite sign; so tan  0

Therefore

lim
→+

tan = lim
→+

sin

cos
= −∞

3.3.3 Cotangent

If  is not a multiple of  then sin  6= 0 and so

lim
→

cot = lim
→

cos

sin
=
cos 

sin 
= cot 

If  is a multiple of  then lim→ cot does not exist.

Note that

cot = tan
³
2
− 

´
= − tan

³
− 

2

´


So, if  is a multiple of  then

lim
→−

cot = − lim
→−

tan
³
− 

2

´
= − lim

→(−
2 )
−
tan = −∞

and similarly

lim
→+

cot = − lim
→+

tan
³
− 

2

´
= − lim

→(−
2 )

+
tan = +∞
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Fig. 3.4. The graoh of () =
1− cos




3.3.4 Typical Examples

Example 15 Find lim→0
1− cos


(see Figure 3.4)

Solution:

lim
→0

1− cos


· 1 + cos
1 + cos

= lim
→0

1− cos2 


· 1

1 + cos

= lim
→0

sin2 


· 1

1 + cos

= lim
→0

sin


· sin

1 + cos

= lim
→0

sin


· lim
→0

sin

1 + cos

= 1 · 0
2
= 0

¤

Example 16 Find lim→0
sin2()

22


Solution:

lim
→0

sin2()

22
= lim

→0
2

2

sin()



sin()



=
2

2
lim
→0

sin()


· lim
→0

sin()



=
2

2
· 1 · 1 = 2

2
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¤

Example 17 Find lim→0
2− 3 cos+ cos2 

sin


Solution:

lim
→0

2− 3 cos+ cos2 
sin

= lim
→0

(2− cos) (1− cos)
sin

= lim
→0

(2− cos)
(1− cos)


sin


= (2− 1) · 01 = 0

¤

Example 18 Find lim→0
1− cos(3)

2


Solution:

lim
→0

1− cos(3)
2

= lim
→0

1− cos(3)
2

· 1 + cos(3)
1 + cos(3)

= lim
→0

1− cos2(3)
2

· 1

1 + cos(3)

lim
→0

sin(3)


· sin(3)



3 · 3
1 + cos(3)

= 1 · 1 · 9
2

=
9

2


¤

3.4 The Epsilon-Delta Definition of a Limit

Let  be a function that is defined on an open interval containing 

except possibly  itself, and let  be a real number. The statement

lim→ () = 

means that for every   0 there exists a   0 such that

if 0  |− |   then |()− |  

Example 19 Let () = ||  show that lim→0 () does not exist.
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Solution: If   0 then ||  =  = 1 and hence, to the right of the

-axis, the graph coincides with the line  = 1 If   0 then ||  = − =
−1 which means that to the left of the -axis the graph of  coincides with the
line  = −1 If it were true that lim→0 () =  for sone  then the preceding

remarks imply, that −1 ≤  ≤ 1 If we consider any pair of horizontal lines
 = ±  where 1    0 then there exist points on the graph which are not

between these lines for some nonzero  in every interval (− ) containing 0
It follows that the limit does not exist. ¤

Example 20 For the limit given below, find the largest  that works for the

given 

lim
→4

2 = 8  = 01

Solution: The definition tells us that lim→4 2 = 8 iff for each   0

there exists a   0 such that

if 0  |− 4|   then |2− 8|  

Note that |2− 8| = 2 |− 4|  Thus |2− 8|   whenever 2 |− 4|   or

|− 4|  
2
 From the work shown above, we see that the largest choice of 

that works for   0 is  = 2 ¤

Exercise 3.2 Give an −  proof for the following limit

lim
→3

(3+ 1) = 10

Solution: The definition tells us that lim→3 (3+ 1) = 10 iff for each

  0 there exists a   0 such that

if 0  |− 3|   then |(3+ 1)− 10|  

Note that

|(3+ 1)− 10| = |3− 9| = 3 |− 3| 
Thus |(3+ 1)− 10|   whenever 3 |− 3|   or |− 3|  3

Now let   0 Choose  = 3

If 0  |− 3|   then

|(3+ 1)− 10| = |3− 9| = 3 |− 3|  3 = 3
³
3

´
= 

By the −  definition of a limit, lim→3 (3+ 1) = 10 ¤
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3.5 Exercises

Exercise 3.3 Why is it impossible to investigate lim→0
√
 by means of the

Epsilon-Delta Definition of a Limit.

Exercise 3.4 For the limit given below, find the largest  that works for the

given 

lim
→4

1

5
 =

4

5
  = 001

Answer:  = 005

Exercise 3.5 Give an −  proof for the following limit

lim
→2

(6− 4) = −2

Exercise 3.6 Give an −  proof for the following limit

lim
→−1

(2− 7) = 9
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4

Continuity (Exercises)

4.1 Continuous Functions

Let  be a function whose domain includes an open interval

centered at  =  Then  is said to be continuous at  if

lim→ () = ()

Example 21 Let’s () be the function with the graph presented in Figure

4.1 Then

•  is continuous everywhere except at  = −1 0 and 2

•  is not continuous at −1 because lim→−1 () = 1 while (−1) = 2
•  is not continuous at 0 because lim→0 () does not exist.

•  is not continuous at 2 because (2) is not defined.

4.1.1 Three types of "simple" discontinuities

Example 22 Let’s () be the function with the graph presented in Figure

4.2 Then it has

• "Jump" discontinuity at  = −1 (one-sided limits exist but are different).

• "Infinite" discontinuity at  = 0 (An infinite one-sided limit).
• "Removable" discontinuity (the limit exists but does not equal the value
of function)

4.1.2 Classical continuous functions

• Polynomials are continuous everywhere.
• Rational functions are continuous whenever they are defined.
• sin and cos are continuous everywhere.



36 4. Continuity (Exercises)

Fig. 4.1. The graph of an exemplary function ()

Fig. 4.2. Three types of "simple" discontinuities
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• tan cot sec, and csc are continuous whenever they are defined.

Example 23 The rational function

() =
(− 1)(2+ 1)

(− 1)

has only two discontinuity points at

1.  = 0 ("Infinite" discontinuity).

2.  = 1 ("Removable" discontinuity).

Example 24 The function f(x) = sin() is continuous everywhere except

at  = 0. It is a prototype of a function which is not continuous due to os-

cillation. We can approach  = 0 in ways that () = 1 and such that

() = −1. Just chose  = 2(4 + 1) or  = 2(4 − 1).
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4.1.3 Several properties of continuous functions

Directly from the properties of the limits it follows that

If  and  are both continuous at  then

1.  +  and  −  are continuous at 

2.  is continuous at 

3.  is continuous at 

4. if () 6= 0 then  is continuous at 

Compositions

5. if  is continuous at  and  is continuous at () then  ◦  is continuous
at 

Example 25 Let

() = 32 +
2 − 1

(− 1)(− sin) 

At what values of  is  not continuous? Of what type is each of its disconti-

nuities?

Solution: First observe, that 32, 2 − 1, and (− 1)(− sin) are each
continuous everywhere, since they involve only polynomials and sine. There-

fore,  is continuous whenever (−1)(−sin) 6= 0, that is, everywhere except
at  = 1 and  = 0

To determine the type of discontinuity at  = 1, we will examine lim→1 ()

() = 32 +
2 − 1

(− 1)(− sin) = 3
2 +

+ 1

(− sin) for  6= 1
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So, the limit exists:

lim
→1

() = 3 · 1 + 1 + 1

(1− sin 1) ≈ 15 616

Therefore, the discontinuity at  = 1 is removable, corresponding to a "hole"

in the graph of 

To determine the type of discontinuity at  = 0, we first notice that

lim
→0

() does not exist

and in fact

lim
→0−

() = −∞ and lim
→0+

() =∞

Therefore,  has an infinite discontinuity at  = 0 corresponding to a vertical

asymptote. ¤

Example 26 Find numbers  and  such that the following function is con-

tinuous everywhere

() =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
 if  ≤ 1

2 + −  if −1 ≤   1

 if 1 ≤ 

Solution: Since the "parts" of  are polynomials, we only need to choose

 and  so that  is continuous at  = −1 and 1 we have

lim
→−1−

() = lim
→−1+

() = (−1)

lim
→−1−

 = lim
→−1+

2 + −  = (−1)

− = 1 + − 

−2+  = 1

and

lim
→1−

() = lim
→1+

() = (1)

lim
→1−

2 + −  = lim
→1+



1 + −  = 
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Fig. 4.3. Continuous function from Example 26

− 2 = −1
Solving the system of two linear equations⎧⎨⎩

−2+  = 1

− 2 = −1
which is equivalent to

−3 = −1
− 2

3
= −1

we get

 = −1
3
  =

1

3


(see Figure 4.3) ¤

Example 27 (Composition) Let

() =


|| =
⎧⎨⎩
−1 if   0

1 if  ≥ 0
If we compose  with sin the result

() =
sin

|sin|
will be continuous, whenever sin 6= 0 i.e. except multipliers of  At multi-
pliers of  it is undefined and has a jump discontinuity (see Figure 4.4).
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Fig. 4.4. Function () = sin
|sin| 

4.1.4 One sided continuity

If the domain of  includes an interval whose right endpoint is  then  is left

continuous at  if

lim
→−

() = ()

If the domain of  includes an interval whose left endpoint is  then  is right

continuous at  if

lim
→+

() = ()

Function () is continuous at  if and only if  is both left continuous and

right continuous at 

Example 28

lim
→+

√
 =
√
 for all   0

and

lim
→0+

√
 = 0

So square root function is continuous at every positive number and right con-

tinuous at 0
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4.1.5 Continuity on an interval

Let  be an interval i.e., a set of one of the following forms

( ) [ ] [ ) ( ] (∞) (−∞ ) (−∞ ] or (−∞∞)
A function  whose domain includes  is said to be continuous on  if for

every number  in 

•  is continuous at  if  is not an endpoint of 

•  is right continuous at  if  is a left endpoint of 

•  is left continuous at  if  is a right endpoint of 

If the domain of  is an interval, and if  is continuous on that interval,

then we may simply say that  is a continuous function.

Example 29 a) () = 1

is continuous on (0∞) and on (−∞ 0)

b) () =
√
 is continuous on [0∞)

c) () =
√
1− 2 is continuous on [−1 1)

4.2 Exercises

Exercise 4.1 Let

() =

⎧⎨⎩
2+ 1 if  ≤ 1

2 − 1 if   1
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Fig. 4.5. Function () =
√
1− 2

Is  continuous at  = 1? If not, what type of discontinuity does  have at

 = 1?

Answer: The function  is discontinuous at  = 1 and has jump disconti-

nuity there.

Exercise 4.2 Let

() =

⎧⎨⎩
2+ 1 if  ≤ 1
0 if  = 1

2 + 2 if   1

Is  continuous at  = 1? If not, what type of discontinuity does  have at

 = 1?

Answer: The function  is discontinuous at  = 1 and has removable dis-

continuity there.

Exercise 4.3 Let

() =

⎧⎨⎩
2+ 1 if  ≤ 1
0 if  = 1
1

−1 if   1

Is  continuous at  = 1? If not, what type of discontinuity does  have at

 = 1?

Answer: The function  is discontinuous at  = 1 and has infinite discon-

tinuity there.

Exercise 4.4 Let

() =

⎧⎨⎩
22 if  ≤ 2

(1−) if   2

For what values of  is  continuous at  = 2?
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Answer:  = 12 or  = −1
Exercise 4.5 Let

() =

√
+ 4− 3√
− 5 

If possible define  at  = 5 so that  is continuous at  = 5

Answer: (5) = 0.

Exercise 4.6 The graph of the function  is shown in the figure below. De-

termine the intervals on which  is continuous.

Answer: (−2−1] (−1 1) [1 2]

Exercise 4.7 Let

() =

⎧⎨⎩
+ 1 if  ≤ 1
1

−1 if   1

Determine the intervals on which  is continuous.

Answer: (−∞ 1) (1∞)
Exercise 4.8 Let

() =

⎧⎨⎩
−2 if  ≤ −1
|| if −1    1
1

−1 if  ≥ 1

Determine the intervals on which  is continuous.

Answer: (−∞ 1] (1∞)
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Exercise 4.9 Let

() =

⎧⎨⎩
−2 if  ≤ −1
|| if −1    1
1

−1 if  ≥ 1

a) Sketch the graph of 

b) At which points is  discontinuous?

c) For each point of discontinuity found in b) determine whether  is contin-

uous from the right, from the left, or neither.

d) Classify each discontinuity found in b) as being a removable discontinuity,

jump discontinuity, or an infinite discontinuity.

Exercise 4.10 On which intervals is the following function continuous?
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5

Benefits of Continuity (Exercises)

5.1 The Intermediate Value Theorem

Theorem 30 (The Intermediate Value Theorem) Suppose () is con-

tinuous on the interval [ ] and let 0 be a number between () and ()

Then there exists a number  in ( ) such that () = 0

Example 31 Use the Intermediate Value Theorem to show that there is a

solution of the given equation in the indicated interval

5 − 24 − − 3 = 0 [23]

Solution:

Scratch Work:

To show that the equation 5−24−−3 = 0 has a solution on the interval
[23], follow the steps below:

1. Let () = 5 − 24 − − 3 Observe, that  is continuous on [23]
2. Find (2) and (3) to see that (2) · (3)  0 (opposite signs)
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Fig. 5.1. The equation 5 − 24 − − 3 = 0 has a solution in [23]

3. Note that  = 0 is the number between (2) and (3)

4.  is continuous on [2 3] and 0 is a number between (2) and (3). So,

use the Intermediate Value Theorem to conclude that there is at least

one number  in the interval (2 3) such that () = 0

Let () = 5−24−−3 Since  is a polynomial function, it is continuous
on the closed interval [2 3] Now, (2) = −5 and (3) = 7 Thus (2)  0 

(3). Hence ,  = 0 is a number between (2) and (3) By the Intermediate

Value Theorem, there is at least one number  in the interval (2 3) such that

() = 0 Therefore, the equation 5 − 24 − − 3 = 0 has a solution in the
interval [23] (see Figure 5.1). ¤

Example 32 Let

() = 4 − 32 + 6
show that there is a number  such that () = 1

Solution: Let () = 4− 32+6 Since  is a polynomial function, it is
continuous on the closed interval [−3−2] Now, (−3) = 36 and (−2) = −8
Thus, (−2)  1  (−3) Hence,  = 1 is a number between (−3) and
(−2) By the Intermediate Value Theorem, there is at least one number
 in the interval (−3−2) such that () = 1 (see Figure 5.2) ¤

Example 33 Solve the given inequality for 

2 − 3
+ 1

 0
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Fig. 5.2. The graph of the function () = 4 − 32 + 6

Solution: Let

() =
2 − 3
+ 1



Since

() =
(− 3)
+ 1



we see that () = 0 for  = 0 and  = 3 Also, () is not defined at  = −1
The numbers −1 0 and 3 partition the real line into 4 subintervals

(−∞−1) (−1 0) (0 3) and (3∞)

The rational function () =
(−3)
+1

is continuous and nonzero on each of these

intervals. Therefore, either ()  0 or ()  0 on each of the subintervals.

To determine the sign of () on each interval, choose a number  in each

subinterval and evaluate ()

• Choose  = −2 on the subinterval (−∞−1)

(−2) = −10

so ()  0 on the subinterval (−∞−1)

• Choose  = −1
2
on the subinterval (−1 0)

(−1
2
) =

7

2


so ()  0 on the subinterval (−1 0)
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• Choose  = 1 on the subinterval (0 3)

(1) = −1
so ()  0 on the subinterval (0 3)

• Choose  = 4 on the subinterval (3∞)

(4) =
4

5


so ()  0 on the subinterval (3∞) Therefore, the solution set of the
inequality 2−3

+1
 0 is (−∞−1) ∪ (0 3)

¤

Example 34 At 8 : 00 A.M. on Saturday a man begins running up the side of

a mountain to his weekend campsite (see figure). On Sunday morning at 8 : 00

A.M. he runs back down the mountain. It takes him 20 minutes to run up, but

only 10 minutes to run down. At some point on the way down, he realizes that

he passed the same place at exactly the same time on Saturday. Prove that he

is correct.
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Solution: HINT: Let () and () be the position functions for the runs

up and down, and apply the Intermediate Value Theorem to the function

() = ()− ()

Example 35 Verify that the function () = 17−3+5+57+sin() has

a root.

Solution: The function goes to +∞ for →∞ and to −∞ for → −∞.
We have for example (10000)  0 and (−1000000)  0. The intermediate

value theorem assures there is a point  where () = 0. ¤

Example 36 There is a point on the earth, where temperature and pressure

agrees with the temperature and pressure on the antipode.

Solution: Lets draw a meridian through the north and south pole and

let () be the temperature on that circle. Define () = ()− (+ ). If

this function is zero on the north pole, we have found our point. If not, ()

has different signs on the north and south pole. There exists therefore an ,

here the temperature is the same. Now, for every meridian, we have a latitude

value () for which the temperature works. Now define () = ()− (+).

This function is continuous. Start with meridian 0. If (0) = 0 we have found

our point. If not, then (0) and () take different signs. By the intermediate

value theorem again, we have a root of . At this point both temperature and

pressure are the same than on the antipode. Remark: this argument in the

second part is not yet complete. Do you see where the problem is?



52 5. Benefits of Continuity (Exercises)

Fig. 5.3. Function () which is continuous on (−2 2) but has no minimum
value, and has no maximum value.

5.2 Boundedness; The Extreme Value Theorem

Theorem 37 (The Extreme Value Theorem) Suppose that  is contin-

uous on a closed bounded interval [ ]. Then there exist numbers  and  in

[ ] such that

() ≤ () ≤ () for all  in [ ]

Example 38 Give an example of a function  which is continuous on an open

interval ( ), but it has no minimum value and it has no maximum value

Solution: See Figure 5.3

Example 39 Give an example of a function  which is defined but not con-

tinuous on an closed interval [ ], but it has no minimum value.

Solution: Figure 5.4 presents such a function.

5.3 Exercises

Exercise 5.1 Given that  and  are continuous on [ ] such that () 

() and ()  (), prove that there is a number  in ( ) such that () =

()

Exercise 5.2 Prove that the equation

2 + 1

+ 3
+

4 + 1

− 4 = 0
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Fig. 5.4. This function has no minimum value on [0 2]

has a solution in the interval (−3 4)
Exercise 5.3 Show, that there is a solution to the equation  = 10.

Exercise 5.4 Does the function () = +ln | ln ||| have a root somewhere?
Exercise 5.5 Prove that on an arbitrary floor, a square table can be turned

so that it does not wobble any more.

Exercise 5.6 Sketch the graph of a function  that is defined on the interval

[1 2] and meets the given conditions (if possible).

a)  is continuous on [1 2]

b) The maximum value of  on [1 2] is 3

c) The maximum value of  on [1 2] is 1
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Exercise 5.7 Sketch the graph of a function  that is defined on the interval

[1 2] and meets the given conditions (if possible).

a)  is continuous on (1 2)

b) The function takes only three distinct values.

Exercise 5.8 Sketch the graph of a function  that is defined on the interval

[1 2] and meets the given conditions (if possible).

a)  is continuous on (1 2)

b) the range of  is an unbounded interval

Exercise 5.9 Sketch the graph of a function  that is defined on the interval

[1 2] and meets the given conditions (if possible).

a)  is continuous on [1 2]

b) the range of  is an unbounded interval.
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7

How to solve differentiation problems
(Exercises)
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8

The derivative and graphs (Exercises)

Differential calculus provides tests for locating the key features of graphs.

8.1 Practice Problems

8.1.1 Continuity and the Intermediate Value Theorem

If a continuous function on a closed interval has opposite signs at the end-

points, it must be zero at some interior point.

Example 40 Show that the function () = ( − 1)32 is continuous at
0 = 4.

Solution: This is a rational function whose denominator does not vanish

at 0 = 4, so it is continuous by the rational function rule. ¤

Example 41 Let () be the step function defined by

() =

⎧⎨⎩
0 if  ≤ 0

1 if   0

Show that  is not continuous at 0 = 0. Sketch.

Solution: The graph of g is shown in Fig. 8.1. Since  approaches (in fact,

equals) 0 as  approaches 0 from the left, but approaches 1 as  approaches

0 from the right, lim→0 () does not exist. Therefore,  is not continuous at
0 = 0. ¤
We proved the following theorem:  is differentiable at 0, then  is con-

tinuous at 0. Using our knowledge of differential calculus, we can use this

relationship to establish the continuity of additional functions or to confirm

the continuity of functions originally determined using the laws of limits.

Example 42

a) Show that () = 32(3 − 2) is continuous at 0 = 1. Where else is it

continuous?
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Fig. 8.1. This step function is discontinuous at 0 = 0.

b) Show that () =
√
2 + 2+ 1 is continuous at  = 0.

Solution:

a) By our rules for differentiation, we see that this function is differentiable

at 0 = 1; indeed, 3 − 2 does not vanish at 0 = 1. Thus  is also

continuous at 0 = 1. Similarly,  is continuous at each , such that

3 − 2 6= 0, i.e., at each  6= 3
√
2.

b) This function is the composition of the square root function () =
√


and the function () = 2 + 2+ 1; () = (()). Note that (0) =

1  0. Since  is differentiable at any  (being a polynomial), and  is

differentiable at  = ,  is differentiable at  = 0 by the chain rule.

Thus  is continuous at  = 0. ¤

A continuous function is one whose graph never "jumps." The definition of

continuity is local since continuity at each point involves values of the function

only near that point. There is a corresponding global statement, called the

Intermediate Value Theorem, which involves the behavior of a function over

an entire interval [ ].

Example 43 Show that there is a number , such that 50 − 0 = 3.

Solution: Let () = 5−. Then (0) = 0 and (2) = 30. Since 0  3 

30, the intermediate value theorem guarantees that there is a number 0, in

(0 2) such that (0) = 3. (The function  is continuous on [0 2] because it

is a polynomial.) ¤
Notice that the intermediate value theorem does not tell us how to find the

number 0, but merely that it exists. (In fact there may be more than one
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possible choice for 0.) Nevertheless, by repeatedly dividing an interval into

two or more parts and evaluating () at the dividing points, we can solve

the equation (0) =  as accurately as we wish. This method of bisection is

illustrated in the next example.

Example 44 (The method of bisection) Find a solution of the equation

5− = 3 in (0 2) to within an accuracy of 01 by repeatedly dividing intervals
in half and testing each half for a root.

Solution: In Example 43 we saw that the equation has a solution in

the interval (0 2). To locate the solution more precisely, we evaluate (1) =

15 − 1 = 0. Thus (1)  3  (2), so there is a root in (1 2). Now we bisect

[1 2] into [1 15] and [15 2] and repeat: (15) w 609  3. so there is a root in
(1 15); (125) = 180  3, so there is a root in (125 15); f(1.375)w 354  3,
so there is a root in (125 1375); thus 0 = 13 is within 01 of a root. Further

accuracy can be obtained by means of further bisections. ¤

8.1.2 Increasing and and Decreasing Functions

The sign of the derivative indicates whether a function is increasing or de-

creasing.

Example 45 Show that () = 2 is increasing at 0 = 2.

Solution: Choose ( ) to be, say, (1 3). If 1    2, we have () =

2  4 = 20. If 2    3, then () = 2  4 = 20. We have verified

conditions of the definition, so  is increasing at 0 = 2. ¤

Example 46

a) Is 5 − 3 − 22 increasing or decreasing at −2?
b) Is () =

√
2 −  increasing or decreasing at  = 2?

Solution:

a) Letting () = 5−3−22, we have  0() = 54−32−4, and  0(−2) =
5(−2)−3(−2)2 − 4(−2) = 80 − 12 + 8 = 76, which is positive. Thus

5 − 3 − 22 is increasing at −2.
b) By the chain rule, 0() = 1

2
2−1√
2− so 

0(2) = 3
4

√
2  0. Thus  is increasing

at  = 2. ¤

Example 47 Let () = 3−2++3. How does f change sign at  = −1?
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Solution: Notice that (−1) = 0. Also,  0(−1) = 3(−1)2−2(−1)+1 = 6 
0, so  is increasing at  = −1 Thus  changes sign from negative to positive.
¤

Example 48 On what intervals is () = 3−2+6 increasing or decreasing?
Solution: We consider the derivative  0() = 32 − 2. This is positive

when 32 − 2  0, i.e., when 2  23, i.e., either  
p
23 or   −

p
23.

Similarly,  0()  0 when 2  23, i.e., −
p
23   

p
23. Thus,  is

increasing on the intervals (−∞−
p
23) and (

p
23∞) , and  is decreasing

on (−
p
23

p
23). ¤

Example 49 Match each of the functions in the left-hand column of Fig. 8.2

with its derivative in the right-hand column.

Solution: Function (1) is decreasing for   0 and increasing for   0.

The only functions in the right-hand column which are negative for   0

and positive for   0 are () and (). We notice, further, that the derivative

of function 1is not constant for   0 (the slope of the tangent is constantly

changing), which eliminates (). Similar reasoning leads to the rest of the

answers, which are: ()− () (2)− () (3)− () (4)− () (5)− ().
Exercise 8.1 Find the critical points of the function () = 34−83+62−
1. Are they local maximum or minimum points?

Solution: We begin by finding the critical points:

 0() = 123 − 242 + 12 = 12(2 − 2+ 1) = 12(− 1)2;

the critical points are thus 0 and 1. Since (− 1)2 is always nonnegative, the
only sign change is from negative to positive at 0. Thus 0 is a local minimum

point, and  is increasing at 1 (see Fig. 8.3). ¤

8.1.3 The Second Derivative and Concavity

The sign of the second derivative indicates which way the graph of a function

is bending.

Example 50 Find the intervals on which () = 33 − 8 + 12 is concave
upward and on which it is concave downward. Make a rough sketch of the

graph.

Solution: Differentiating  , we get  0() = 92−8,  00() = 18. Thus  is
concave upward when 18  0 (that is, when   0 ) and concave downward
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Fig. 8.2. Matching functions and their derivatives.

Fig. 8.3. The graph of () = 34 − 83 + 62 − 1
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Fig. 8.4. The critical points and concavity of () = 33 − 8+ 12

when   0. The critical points occur when  0() = 0, i.e., at  = ±
p
89 = ±

2
3

√
2. Since  00(−2

3

√
2)  0, −2

3

√
2 is a local maximum, and since ”(2

3

√
2)  0

, 2
3

√
2 is a local minimum. Additionaly  = 0 is an inflection point for  , as

 00(0) = 0 This information is sketched in Fig. 8.4 ¤

Example 51 Find the inflection points of the function () = 244− 323+
92 + 1.

Solution: We have  0() = 963− 962+18, so  00() = 2882− 192+
18, Solution is: 1

12

√
7 + 1

3
 1
3
− 1

12

√
7. To find inflection points, we begin by

solving  00() = 0; the quadratic formula gives  =
¡
1
3
± 1

12

√
7
¢
. Using our

knowledge of parabolas, we can conclude that  00 changes from positive to

negative at
¡
1
3
− 1

12

√
7
¢
and from negative to positive at

¡
1
3
+ 1
12

√
7
¢
; thus

both are inflection points.

8.2 Exercises.

Exercise 8.2 Suppose that  is continuous on [0 3], that  has no roots on

the interval, and that (0) = 1. Prove that ()  0 for all x in [0 3].

Exercise 8.3 Where is () = 92 − 3√4 − 22 − 8 continuous?

Exercise 8.4 Show that the equation −5 + 2 = 2− 6 has a real solution.

Exercise 8.5 Prove that () = 8 + 34 − 1 has at least two distinct (real)
zeros.
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Fig. 8.5. Sketch functions that have these derivatives..

Exercise 8.6 Find all points in which () = 2 − 3+ 2 is increasing, and
at which it changes sign.

Exercise 8.7 Find a quadratic polynomial which is zero at  = 1, is decreas-

ing if   2, and is increasing if   2.

Exercise 8.8 Sketch functions whose derivatives are shown in Fig. 8.5.

Exercise 8.9 Find the inflection points for the following functions:

a) () = 3 − 

b) () = 7

c) () = (− 1)4
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Exercise 8.10 Match the graphs of the functions () in )−) with  00()
i1)− 8)
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Exercise 8.11 Match the following functions )−) with their second deriv-

atives 1)− 8):
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Exercise 8.12 Match the functions (-) (top row) with their derivatives (1-

4) (middle row) and second derivatives (-) (last row).
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Implicit differentiation
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10

Sketching graphs (Exercises)

Using calculus to determine the principal features of a graph often produces

better results than simple plotting.

Graphing procedure:

To sketch the graph of a function  :

1. Note any symmetries of  . Is () = (−), or () = −(−), or
neither? In the first case,  is called even; in the second case,  is called

odd. If  is even that is, () = (−) we may plot the graph for  ≥ 0
and then reflect the result across they axis to obtain the graph for  ≤ 0.
If  is odd, that is, () = −(−) then, having plotted  for  ≥ 0, we
may reflect the graph in the  axis and then in the  axis to obtain the

graph for  ≤ 0.
2. Locate any points where  is not defined and determine the behavior of

 near these points. Also determine, if you can, the behavior of () for

 very large positive and negative.

3. Locate the local maxima and minima of  , and determine the intervals

on which  is increasing and decreasing.

4. Locate the inflection points of  , and determine the intervals on which

 is concave upward and downward.

5. Plot a few other key points, such as  and  intercepts, and draw a small

piece of the tangent line to the graph at each of the points you have

plotted. (To do this, you must evaluate  0() at each point.)

6. Fill in the graph consistent with the information gathered in steps 1

through 5

10.1 Practice Problems

Example 52 Sketch the graph of () =


1 + 2
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Solution: We carry out the six-step procedure:

1. (−) = − ¡1 + (−)2¢ = − ¡1 + ()2¢ = −();  is odd, so its
graph must by symmetric when reflected in the  and  axes.

2. Since the denominator 1+2 is never zero, the function is defined every-

where; there are no vertical asymptotes. For  6= 0, we have

() =


1 + 2
=

1

+
1



Since  becomes small as  becomes large, () looks like 1(+0) =

 for  large. Thus  = 0 is a horizontal asymptote; the graph is below

 = 0 for  large and negative and above  = 0 for  large and positive.

3.

 0() =
1

2 + 1
− 2 2

(2 + 1)
2
=

¡
1− 2

¢
(2 + 1)

2

which vanishes when  = ±1 . To check the sign of  0() on (−∞−1),
(−1 1), and (1∞), we evaluate it at conveniently chosen points:  0(−2) =
−325  0(0) = 1  0(2) = −325 . Thus  is decreasing on (−∞−1)
and on (1∞) and  is increasing on (−1 1). Hence −1 is a local mini-
mum and 1 is a local maximum by the first derivative test.

4.

 00() = 8
3

(2 + 1)
3
− 6 

(2 + 1)
2
= 2



(2 + 1)
3

¡
2 − 3¢

This is zero when  = 0
√
3 and −√3. Since the denominator of  00 is

positive, we can determine the sign by evaluating the numerator. Evalu-

ating at −2 −1 1 and 2, we get −4, 4, −4, and 4, so  is concave down-
ward on

¡−∞−√3¢ and (0√3) and concave upward on (−√3 0)and
(
√
3∞); −√3, 0, and √3 are points of inflection.

5. The only solution of () = 0 is  = 0.

(0) = 0  0(0) = 1

(1) = 1
2

 0(1) = 0

(
√
3) = 1

4

√
3  0(

√
3) = −1

8

The information obtained in steps 1 through 5 is placed tentatively on

the graph in Fig. 10.1. As we said in step 1, we need do this only for

 ≥ 0
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Fig. 10.1. The graph of () =


1 + 2
after steps 1 to 5

6. We draw the final graph, remembering to obtain the left-hand side by

reflecting the right-hand side in both axes. The result is shown in Fig.

10.2.

¤

Example 53 Sketch the graph of

() = (+ 1)
2
3 2

Solution: We have

 0() =
2

3

2

3
√
+ 1

+ 2 (+ 1)
2
3 =

2

3

4+ 3
3
√
+ 1

For  near −1, but   −1,  0() is large positive, while for   −1,  0() is
large negative. Since  is continuous at −1, this is a local minimum and a cusp.
The other critical points are  = 0 and  = −34. From the first derivative

test (or second derivative test, if you prefer), −3
4
is a local maximum and zero

is a local minimum. For   0,  is increasing since  0()  0; for   −1,  is
decreasing since  0()  0. Thus we can sketch the graph as in Fig. 10.3. (We
located the inflection points at w −0208 and −1442 by setting the second
derivative equal to zero.)
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Fig. 10.2. The complete graph of () =


1 + 2


Fig. 10.3. The graph of () = (+ 1)
2
3 2 has a cusp at  = −1
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10.2 Exercises

Exercise 10.1 Sketch the graph of the function

() =
1

2
− 1

(− 2)2 

Indicate the asymptotes, local extrema, and points of inflection.

Exercise 10.2 Sketch the graph of the function

() = 1− 3

+
4

3


Indicate the asymptotes, local extrema, and points of inflection.

Exercise 10.3 Sketch the graph of the function

() =
1

(2 + 1)
2


Indicate the asymptotes, local extrema, and points of inflect.

Exercise 10.4 Sketch the graph  = (1− ) by

a) the six-step procedure and

b) by making the transformation  = 1− .

Exercise 10.5 Sketch the graphs of the following functions:

a) () =
2 + 1

2 − 1 

b) () =
2 − 1
2 + 1



c) () =
2 + 1

 (2 − 1) 

d) () =
2 − 1

 (2 + 1)
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Optimization and linearization (Exercises)

11.1 Practice Problems

Example 54 A rectangle is inscribed in the region in the first quadrant bounded

by the coordinate axes and the parabola  = 1−2. Find the dimensions of the
rectangle that maximizes its area.

Solution: We have

 =  where  = 1− 2

 = 
¡
1− 2

¢
for 0 ≤  ≤ 1

0() = 1− 32 = 0 at  =

r
1

3
= 057735



Ãr
1

3

!
=

r
1

3

µ
1− 1

3

¶
=
2

9

√
3 = 03849

Maximum value: (

r
1

3
) =

2

9

√
3
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width=
q

1
3

Optimal dimensions:

height=
2

3
 ¤

Example 55 Find the point on the graph of  =
1

2
,   0 that is closest

to the origin.

Solution: Distance from the origin is given byp
2 + (12)2 =

p
2 + 14

Squared distance

() = 2 + 14 =
6+1

4
   0

 0() = 2− 4

5
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 0() = 0 at  =
6
√
2 ≈ 1 1225

 00() =
20

6
+ 2  0

Minimum value of  : ( 6
√
2) = 3

2
3
√
2

Minimum distance:

q
(

6
√
2) =

q
3
2
3
√
2 ≈ 13747

Closest point on the curve:

µ
6
√
2
1
6
√
2

¶
¤

Example 56 A juice can (in the shape of a right circular cylinder) is to have

a volume of 1 liter (1000 3). Find the height and radius that minimize the

surface area of the can- and thus the amount of material used in its construc-

tion.

Solution: We have

 = 22 + 2
1000

2

() = 2

µ
2 +

1000



¶
 0   ∞ (domain).

0() = 4
µ
3 − 500

2

¶

0() = 0 at  =
3

r
500


= 5

3

r
4


(critical number).

00() = 4 +
4000

3
 0

Minimum area: (5 3

q
4

) =

400

3

q
4


+ 50 3

q
4


2

≈ 55358 2

Optimal dimensions:  = 5 3

q
4

≈ 5419 3

 =
1000

25(4)23
= 2 ≈ 10839
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¤

Example 57 An open box is to be made from a rectangular piece of cardboard

that is 8 feet by3 feet by cutting out four equal squares from the corners and

then folding up the flaps. What length of the side of a square will yield the box

with the largest volume?

Solution: Let  be the side of the square that is removed from each corner.

The volume  = , where   and  are the length, width, and height of

the box. Now  = 8− 2,  = 3− 2, and  = , giving

 () = (8− 2) (3− 2) = (42 − 22+ 24) = 43 − 222 + 24
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The width w must be positive. Hence, 3 − 2  0 or 3  2 or 3
2
 

Furthermore,   0. But we also can admit the values  = 0 and  = 3, which

make  = 0 and which, therefore, cannot yield the maximum volume. Thus,

we have to maximize  () on the interval [0 3
2
]. Since

 0() = 122 − 44+ 24

the critical numbers are the solutions of

122 − 44+ 24 = 0

Solutions are: 3 2
3
 The only critical number in

¡
0 3
2

¢
is 2
3
. Hence, the volume

is greatest when  = 2
3
. ¤

The only critical number in (0,j) is 3. Hence, the volume is greatest when x

= 3.

11.2 Exercises

Exercise 11.1 An aquarium is to be built to hold 20 cubic feet of water. If

two ends of the aquarium are square and there is no top, find the dimensions

that minimize the surface area—and thus the amount of glass used in its con-

struction.

Exercise 11.2 A rectangle is constructed in the first quadrant, as shown be-

low, with one corner at (1 0), and its opposite corner on the graph of  = 1.

Find the rectangle with largest area, or, show that there is no rectangle with
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largest area.

Exercise 11.3 Suppose you can drag the blue vertex  of the triangle to create

various isosceles triangles circumscribing the circle. Which isosceles triangle

has minimum area? Which isosceles triangle has minimum perimeter?

Exercise 11.4 A rectangle is constructed in the first quadrant, as shown be-

low, with one corner at the origin, and its opposite corner on the graph of

 = (ln())2. Find the rectangle with largest area, or, show that there is no



11.2 Exercises 83

rectangle with largest area. Note the scale on the axes.

Exercise 11.5 A rectangle is inscribed between the -axis and a downward-

opening parabola, as shown above. The parabola is described by the equation

 = −2 +  where both  and  are positive.

• Let  = 1 and  = 7. What value of  maximizes the area of the rectangle?

• Let  = 1 and  = 7. What value of  maximizes the perimeter of the

rectangle?

• Repeat the above two problems for  and  in general.

Note:  is the distance from the origin to the lower-right corner of the

rectangle;  is not the length of the base of the rectangle!

Exercise 11.6 A farmer has exactly 1200 feet of fencing and needs to cre-

ate a rectangular enclosure with three pens, as shown below. What should the
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dimensions of the enclosure be, to create the maximum area?

Exercise 11.7 Find the dimensions of the cone with minimum volume that

can contain a sphere with radius 

11.3 Review exercises: Chapter 11

Exercise 11.8 Suppose a simple circuit contains two resistors with resis-

tances 1 and 2 in ohms. The resistors are wired in parallel, which implies

that the total resistance of the circuit is given by

 =
1

1
1
+ 1

2

In problems ) through ), find the minimum total resistance of the circuit given

the constraint. Note that in problems like this the domain of the function is
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implied by the physical reality of the situation. Specifically, 1  0 and 2  0

is implied if not explicitly stated. A constraint is used to eliminate either 1
or 2 from the problem, leaving you with a function of a single variable.

a) The sum of the resistances of the two resistors is 30 ohms.

b) The sum of the resistances of the two resistors is Ω ohms, Ω  0

c) The resistance of one resistor is twice the resistance of the second resistor.

Exercise 11.9 More generally, a parallel circuit consisting of  resistors has

total resistance

 =
1

1
1
+ 1

2
+ + 1



where  is the resistance of the th resistor. Suppose that the sum of the

resistances in three resistors is 120 ohms and that the resistance of one of the

resistors is twice the resistance of one of the others. Calculate the minimum

total resistance in the circuit.

Exercise 11.10 Suppose we want to build a rectangular storage container

with a volume of 12 cubic meters. Assume that the cost of materials for the

base is $12 per square meter, and the cost of materials for the sides is $8 per

square meter. The height of the box is three times the width of the base. What’s

the least amount of money we can spend to build such a container?

Exercise 11.11 Suppose you wish to construct a right, circular, cylindrical

cup (without a top) that will hold 1000 cubic centimeters of liquid. What di-

mensions should the cup have in order to minimize the total amount of material

used to construct the cup? Assume that the cup is arbitrarily thin, so that it

is the surface area that we wish to minimize.

Exercise 11.12 As in the previous problem, suppose you wish to construct a

right, circular, cylindrical cup with no top that will hold 1000 cubic centimeters

of liquid. Assume that the base needs to be built out of higher quality material

than the rest of the cup, perhaps because the cup will hold highly acidic liquid.

Material for the base therefore costs $8 per square centimeter while material

for the rest of the cup costs $6 per square centimeter. Find the dimensions of

the cup that minimize the cost of materials.

Exercise 11.13 Suppose that 100 meters of fencing are used to build a rec-

tangular enclosure against a very long wall (so that no fencing needs to be used

along the wall).
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a) What is the largest area of the enclosure that can be constructed using the

fence?

b) What are the dimensions of the maximum-area enclosure?

Exercise 11.14 A farmer is building a rectangular enclosure for 4000 square

yards of land. The enclosure is to be split lengthwise into three rectangular

pens of equal area. The outer fencing for the enclosure costs $10 per yard and

the inner partitions cost $5 per yard.

a) Find the dimensions of the enclosure that would minimize the total cost.

b) Find the dimensions of the enclosure that would minimize the total fencing

used.

Exercise 11.15 An isosceles triangle is inscribed in a circle of radius 2 as

shown in the diagram below. Find the dimensions of the triangle with largest

area inside the circle. (HINT: Let  denote half the length of the base, and show

that the height of the triangle is then 2 +
√
4− 2).

Exercise 11.16 Find the area of the largest rectangle that can be inscribed in

a semicircle of radius .

Exercise 11.17 A rectangle is inscribed in the upper half of the ellipse.

2

4
+ 2 = 1
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as shown in the diagram. Find the dimensions of the rectangle with maximal

area drawn in this fashion.

Exercise 11.18 Find the maximum perimeter of a rectangle that can be in-

scribed in the ellipse

2

2
+

2

2
= 1

Exercise 11.19 Find the radius and height of the right circular cylinder of

largest volume that can be inscribed in a right circular cone with radius 6 inches

and height 10 inches.

Exercise 11.20 Suppose that to make sunglasses, it costs a company ()

dollars, where () = 3 + 2+ 2000.

a) What are the fixed costs associated with production of the sunglasses, i.e.,

what are the costs that the company incurs for setting up to produce the

sunglasses, even if they don’t actually produce any?

b) Denote () to be the function giving the average cost per pair of sunglasses

to produce  sunglasses. Find an expression for (), and determine the

interval on which it should be defined.

c) How many sunglasses should be made to minimize the average cost per pair

of sunglasses? What is the minimum average cost?

Exercise 11.21 A piece of wire 10 m long is cut into two pieces. One piece

is bent into a square and the other is bent into an equilateral triangle. How

should the wire be cut so that the total area enclosed is () a maximum? ()

A minimum?

Exercise 11.22 Find an equation of the line through the point (3 5) that cuts

off the least area from the first quadrant.
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Exercise 11.23 Find the maximum area of a rectangle that can be circum-

scribed about a given rectangle with length  and width 

Exercise 11.24 A cone is made from a circular sheet of radius  by cutting

out a sector and gluing the cut edges of the remaining piece together. What is

the maximum volume attainable for the cone?

Exercise 11.25 According to U.S. postal regulations, the girth plus the length

of a parcel sent by mail may not exceed 108 inches, where by “girth” we mean

the perimeter of the smallest end. What is the largest possible volume of a

rectangular parcel with a square end that can be sent by mail? What are the

dimensions of the package of largest volume?

Exercise 11.26 A closed box has a fixed surface area  and a square base

with side .

a) Find a formula for the volume,  , of the box as a function of . What is

the domain of  ?

b) Graph  against .

c) Find the maximum value of  .

Exercise 11.27 A rectangular swimming pool is to be built with an area of

1800 square meters. The owner wants 5-meter wide decks along either side

and 10-meter wide decks at the two ends. Find the dimensions of the smallest

piece of property on which the pool can be built satisfying these conditions.
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Exercise 11.28 A square-bottomed box with a top has a fixed volume,  .

What dimensions minimize the surface area?

Exercise 11.29 Find the global maxima and minima of the function

() = 3||− 3

on the interval [−1 2]. Sketch a graph.

Exercise 11.30 Find the largest area  = 4 of a rectangle with vertices

( ), (− ), (−−), (−) inscribed in the ellipse

2 + 22 = 1

Exercise 11.31 A ladder of length 1 is one side at a wall and on one side at

the floor.

a) Verify that the distance from the ladder to the corner is () = ()().

b) Find the angle  for which () is maximal.

Exercise 11.32 A candy manufacturer builds spherical candies. Its effective-

ness is () −  (), where () is the surface area and  () the volume of

a candy of radius . Find the radius, where () = () −  () has a global
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maximum for  ≥ 0.

Exercise 11.33 A tennis field of width  and length  contains a fenced ref-

eree area of length 2 and width 1 within the field and an already built wall. The

circumference a fence satisfies 2++2 = 100, (an expression which still can

be simplified). We want to maximize the area  − 2.

a) On which interval [a, b] does the variable x make sense? Find a function

f(x) which needs to be maximized.

b) Find the local maximum of  and check it with the second derivative test.

c) What is the global maximum of  on [ ]?

CALCULUS MIDTERM 17122014 ∗ GROUP 3

Name: __________________

• Please write neatly. Answers which are illegible for the grader can not be
given credit.
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• No calculators, computers, or other electronic aids are allowed.

• You have 90 minutes time to complete your work.

Exercise 11.34 A cup of height  and radius  has the volume  = 2.

Its surface area is 2+. Among all cups with volume  =  find the one

which has minimal surface area. Find the global minimum.

Exercise 11.35 Find a concrete function which has three local maxima and

two local minima.

Exercise 11.36 The University stadium has a track which encloses a rectan-

gular field of dimensions  . The circumference of the track is 400 = 2+2

and is fixed. We want to maximize the area  for a play field. Which 

achieves this?
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Exercise 11.37 Which rectangular triangle (0 0), ( 0), (0 ) with + = 2,

 ≥ 0,  ≥ 0 has maximal area  = 2?

Exercise 11.38 A candle holder of height  and radius  is made of alu-

minum. Its total surface area is 2 + 2 = (implying  = 1(2)− 2).

Find  for which the volume

() = 2()

is maximal.
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Definite integrals (Exercises)

12.1 Practice Problems

12.1.1 The Definite Integral of a Continuous Function

Example 58 Find  ( ) (lower Riemann sum) and  ( ) (lower Riemann

sum) for () = 2  ∈ [0 1] and partition  = {0 1
4
 1
2
 1}

Solution: The function () = 2 is continuous on the closed interval

[0 1] The partition  divides the interval [0 1] into two subintervals [0 1
4
]

[1
4
 1
2
] and [1

2
 1] with the following lengths:

∆1 =
1

4
− 0 = 1

4

∆2 =
1

2
− 1
4
=
1

4


∆3 = 1− 1
2
=
1

2


Since  is increasing on [0 1],  attains its maximum value at the right end-

point of each subinterval and its minimum value at the left endpoint of each

subinterval.

1 = (
1

4
) =

1

16
1 = (0) = 0

2 = (
1

2
) =

1

4
2 = (

1

4
) =

1

16

3 = (1) = 1 3 = (
1

2
) =

1

4

 ( ) =1∆1+2∆2+3∆3 =
1

16
· 1
4
+
1

4
· 1
4
+ 1 · 1

2
=
37

64
= 0578 13

 ( ) = 1∆1 +2∆2 +3∆3 = 0 · 1
4
+
1

16
· 1
4
+
1

4
· 1
2
=
9

64
= 0140 63
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¤

Example 59 Use upper and lower sums to show that

06 

Z 1

0

1

1 + 2
  1

Solution: The function () = 1
1+2

is continuous on the closed interval

[0 1] Let  = {0 1
2
 1} The partition  divides the interval [0 1] into two

subintervals [0 1
2
] and [1

2
 1] with the following lengths:

∆1 =
1

2
− 0 = 1

2

∆2 = 1− 1
2
=
1

2


Since  is decreasing on [0 1],  attains its maximum value at the left end-

point of each subinterval and its minimum value at the right endpoint of each

subinterval.

1 = (0) = 1 1 = (
1

2
) =

4

5

2 = (
1

2
) =

4

5
2 = (1) =

1

2

Thus

 ( ) = 1∆1 +2∆2

= 1 · 1
2
+
4

5
· 1
2
=
9

10
= 09

 ( ) = 1∆1 +2∆2

=
4

5
· 1
2
+
1

2
· 1
2
=
13

20
= 065
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Thus,

06  065 =  ( ) ≤
Z 1

0

1

1 + 2
 ≤  ( ) = 09  1

¤

Example 60 Given thatZ 1

0

() = 4

Z 3

0

() = 2 and

Z 6

3

() = 1

find each of the following:

a)
R 6
0
()

b)
R 3
1
()

c)
R 0
3
()

d)
R 3
3
()

Solution:

a)
R 6
0
() =

R 3
0
()+

R 6
3
() = 2 + 1 = 3

b)
R 3
1
() =

R 0
1
()+

R 3
0
() = − R 1

0
()+

R 3
0
() = −4 + 2

= −2
c)
R 0
3
() = − R 3

0
() = −2

d)
R 3
3
() = 0

¤

12.1.2 Indefinite integral

Exercise 12.1 Find the indefinite integralZ µ
3 − 2
2

¶


Solution:

Z µ
3 − 2
2

¶
 =

Z ¡
− 2−2¢  = 1

2
2 − 2

(−1)
−1 +  =

1

2
2 +

2


+ 

¤
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Exercise 12.2 Find () from the given information:

 00() = 2 −   0(1) = 2 (1) = 2

Solution:

 0() =
Z ¡

2 − 
¢
 =

1

6
2 (2− 3) + 

To evaluate the constant  we use the fact that  0(1) = 2 Since  0(1) = 2

and

 0(1) =
1

6
(1) · 12· (2 · 1− 3) +  = −1

6
+ 

 =
13

6


Therefore

 0() =
1

6
2 (2− 3) + 13

6
=
1

3
3 − 1

2
2 +

13

6

and

() =

Z µ
1

3
3 − 1

2
2 +

13

6

¶
 =

1

12
4 − 1

6
3 +

13

6
+

To evaluate the constant  we use the fact that (1) = 3 Since (1) = 3 and

(1) =
1

12
(1)4 − 1

6
(1)3 +

13

6
(1) + =  +

25

12


 =
11

12


Therefore,

() =
1

12
4 − 1

6
3 +

13

6
+

11

12


¤

Example 61 Compute the following indefinite integrals:

a)
R ¡
52 − 4+ 1¢ 

b)
R ¡
83 −√3¢ 

c)
R 3 + 1

2


d)
R
( − 3)√

Solution:
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a) Z ¡
52 − 4+ 1¢  =

Z
52+

Z
(−4) +

Z
1

= 5

Z
2− 4

Z
+

Z


=
5

3
3 − 22 + + 

b) Z ³
83 −

√
3
´
 =

Z ³
83 −

√
3

1
2

´
 = 24 − 2

3

√
3

3
2 + 

c) Z
3 + 1

2
 =

Z ¡
+ −2

¢
 =

1

2

¡
3 − 2¢+ 

d) Z
( − 3)√ =

Z ³

3
2 − 3 12

´


=
2

5

3
2 ( − 5) + 

¤

Example 62 A particle moves along the -axis with velocity () = 2 + 1.

Determine  given that (0) = (1) Find the total distance traveled by the

particle during the first second.

Solution:

() =

Z ¡
2 + 1

¢
 =

1

3
3 + +

To determine  use the fact that (0) = (1) .

(0) =
1

3
 (0)3 + (0) + = 

(0) =
1

3
 (1)3 + (1) +  =



3
+ 1 +

So

 =


3
+ 1 +

and it follows, that

 = −3
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and

() = () = −32 + 1
To find the total distance traveled by the particle during the first second,

evaluate
R 1
0
|()|  :Z 1

0

|()|  =

Z 1
√
3

0

¡−32 + 1¢ + Z 1

1
√
3

¡
32 − 1¢ 

=
2

9

√
3 +

2

9

√
3 =

4

9

√
3 ≈: 07698

The total distance traveled by the particle during the first second is 4
9

√
3.

12.2 Exercises

Exercise 12.3 Find  ( ) and  ( ) for () = 2  ∈ [−1=]  =

{−1−3
4
−1

4
 0}

Answer:  ( ) =
35
64

 ( ) =
11
64


Exercise 12.4 Let () = 2  ∈ [0 4] ∗1 = 1 ∗2 = 2 ∗3 = 3 and ∗4 = 4.
Draw a figure showing the Riemann Sum ∗( ) Compute the value of ∗( )

Answer: ∗( ) = 30

Exercise 12.5 Find the value of

a)
P

=1 (
∗
)∆

b) max∆

when

1. () = + 1;  = 0,  = 4; = 3; ∆1 = 1, ∆2 = 1, ∆3 = 2; 
∗
1 =

1
3


∗2 =
2
3
 ∗3 = 3;

2. () = cos;  = 0,  = 2;  = 4; ∆1 = 2, ∆2 = 34, ∆3 =

2 ∆4 = 4; ∗1 = 4 ∗2 =  ∗3 = 33 
∗
4 = 74;

3. () = 3;  = −3,  = 3;  = 4;∆1 = 2, ∆2 = 1, ∆3 = 1 ∆4 = 2;
∗1 = −2 ∗2 = 0 ∗3 = 0 ∗4 = 2;

Exercise 12.6 Use the given values of  and  to express the following limits

as integrals. (Do not evaluate the integrals.)
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a) lim∆→0
P

=1(
∗
)
2∆  = −1,  = 2 −1 ≤ ∗ ≤ 

b) lim∆→0
P

=1(
∗
)
3∆  = 1,  = 2 −1 ≤ ∗ ≤ 

c) lim∆→0
P

=1 4
∗
(1− 3∗)3∆  = −3,  = 3 −1 ≤ ∗ ≤ 

d) lim∆→0
P

=1 sin (
∗
)
2∆  = 0,  =  −1 ≤ ∗ ≤ 

Exercise 12.7 Express the integrals as limits of Riemann sums. (Do not eval-

uate the integrals.)

a)
R 2
1
2

b)
R 2
1

√


c)
R 1
0


2+



d)
R 2
0

cos(3)

e)
R 1
−1

2+1
3−2

Exercise 12.8 Sketch the region whose signed area is represented by the def-

inite integral, and evaluate the integral using an appropriate formula from

geometry, where needed

a)
R 3
1


b)
R −1
−3 

c)
R 4
−1 

d)
R 3
0

¡
1− 1

2

¢


e)
R 2
−1 |2− 3| 

f)
R 1
−1
√
1− 2

g)
R 2
0

√
4− 2

Exercise 12.9 In each part, evaluate the integral, given that

() =

⎧⎨⎩
|− 2|   ≥ 0

+ 2   0
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a)
R 0
−2 ()

b)
R 6
0
()

c)
R 6
0
()

d)
R 2
−2 ()

e)
R 4
−2 ()

Exercise 12.10 Define a function  on [0 1] by

() =

⎧⎨⎩
1 0   ≤ 1

0  = 0

Use Definition ?? to show thatZ 1

0

() = 1

Exercise 12.11 Evaluate the limit by expressing it as a definite integral over

the interval [ ] and applying appropriate formulas from geometry.

a) lim∆→0
P

=1(3
∗
 + 1)∆  = 0  = 2.

b) lim∆→0
P

=1

p
4− ∗2∆  = −2  = 2.

Exercise 12.12 In each part, use Theorem?? to determine whether the func-

tion  is integrable on the interval [−1 1].

a) () = cos()

b) () =

⎧⎪⎨⎪⎩
||

  6= 0

0  = 0

c) () =

⎧⎪⎨⎪⎩
1

2
  6= 0

0  = 0

d) () =

⎧⎪⎨⎪⎩
sin

1


  6= 0

0  = 0
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Exercise 12.13 Find the indefinite integralZ µ
2
√
+

1√


¶


Answer: 2
3

√
 (2+ 3) +

Exercise 12.14 An object moves along a coordinate line with velocity () =

62 − 6 units per second. Its initial position is 2 units to the left of the origin.

a) Find the position of the object 3 seconds later,

b) Find the total distance traveled by the object during those 3 seconds.

Answer:

a) The position of the object 3 seconds later is 34 units to the right of the

origin.

b) The total distance traveled by the object during those 3 seconds is 44 units.
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13

The fundamental theorem of calculus
(Exercises)

13.1 Practice Problems

13.1.1 The Function F(x)=
R 

()

Example 63 For  () =
R 
0

√
2 + 4 find the following:

a)  0(−1)
b)  0(0)

c)  0(1
2
)

d)  00()

Solution:

a)  0(−1) = √5
b)  0(0) = 2

c)  0(1
2
) = 1

2

√
17

d)  00() =
√

2 + 4


Example 64 For  () =
R 0

(+ 2)3 = − R 

0
(+ 2)3 find the following:

a)  0(−1)
b)  0(0)

c)  0(1
2
)

d)  00()

Solution:  () =
R 0

(+ 2)3 = − R 

0
(+ 2)3 ,  0() = −(+ 2)3

a)  0(−1) = −(−1 + 2)3 = −1
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b)  0(0) = −(0 + 2)3 = −8
c)  0(1

2
) = −(1

2
+ 2)3 = − ¡5

2

¢3
= −125

8


d)  00() = −3(+ 2)2
¤

Example 65 Let  () =
R 3
0
cos  Find the derivative of 

Solution: Let () = 3 and use the Chain Rule to find the Derivative of



 0() =




µZ 

0

cos 

¶




¡
3
¢
= (cos)

¡
32
¢
= 32 cos3

¤

Example 66 Find area under the graph of

() =
1√
5+ 1

between  = 0 and  = 3

Solution: First we can find the indefinite integralZ
(5+ 1)−12  =

1

5
2

Z
5
1

2
(5+ 1)−12

=
2

5
(5+ 1)12 +

=
2

5

√
5+ 1 + 

Next we can easily compute the definite integralZ 3

0

(5+ 1)−12  =
2

5

√
5+ 1|30

=
2

5

¡√
5+ 1|30

¢
=

2

5

³√
16−

√
1
´
=
6

5

¤
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13.1.2 Area of a Region between 2 Curves

If () ≥ () on the interval [ ] , we say that the small rectangle of width

∆ and height ()− () is a representative rectangle.

Example 67 Find the area of the region in the first quadrant bounded by the

graphs of the curves 1() = 2 and 2() = 3

Solution: By setting the equations equal to each other, you see that the

curves intersect at (0 0) and (1 1). Sketch the region under consideration,

noting that the curve 1() = 2 is above the other curve. Draw a representa-

tive rectangle on the region between the curves. The base of the rectangle has

length ∆, and the height is 1()− 2() = 2 − 3

Loosely speaking, the area between the curves is obtained by adding up the

representative rectangles. That is, the area is the following definite integral

 =

Z 1

0

(1()− 2())  =

Z 1

0

¡
2 − 3

¢
 =

µ
3

3
− 4

4

¶
|10 =

1

12


¤
Sometimes you encounter area problems of more complicated regions. For

instance, the 2 curves might intersect at more than 2 points. In this case, you

must find all the points of intersection and determine which curve is above the

other on each interval determined by these points.

Example 68 Find the area of the region between the graphs () = 33 −
2 − 10 and () = −2 + 2.
Solution: Set the equations equal to each other to find the points of

intersection.

33 − 2 − 10 = −2 + 2
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33 − 12 = 0

3 (− 2) (+ 2) = 0

 = 0 −2 2

The curves intersect at 3 points: (0 0) (2 0), and (−2−8).

On the interval −2 ≤  ≤ 0 , the graph of  is above that of  , whereas on
the interval 0 ≤  ≤ 2 , the graph of  is above that of  . Hence, the area is
given by the 2 integrals shown below

 =

Z 0

−2
(()− ()) +

Z 2

0

(()− ()) 

= 12 + 12 = 24

¤

Example 69 Consider the area bounded by  = 4 − 2 and  =  − 2 .
Calculate this area by integrating with respect to , and then with respect to .

Which method is simpler?
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Solution: Setting the equations equal to each other, you see that they

intersect at the points (0 2) and (−5−3) .

You will need 2 integrals if you integrate with respect to  :Z 0

−5

¡
(+ 2) +

√
4− 

¢
+

Z 4

0

2
√
4−  =

125

6

The problem is easier if you integrate with respect to Z 2

−3

¡¡
4− 2

¢− ( − 2)¢  = 125

6

¤

Remark 70

a) You must be very careful to determine which function is above the other.

b) Keep in mind that although a definite integral can be positive, negative, or

zero, the area of a region is always nonnegative.

Example 71 Find the area of the region bounded by the graphs of  = 2 and

 = 5 two ways (integrating with respect to  and with respect to )

Solution:

a) Vertical slices:
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 =

Z 1

0

(2 − 5) =

µ
1

3
3 − 1

6
6
¶
|10 =:

1

6

b) Horizontal slices:

 =

Z 1

0

(15 − 12) =

µ
5

6
65 − 2

3
32

¶
|10 =

1

6

¤

13.1.3 The Area under an Infinite Region

Sometimes by using limits, you can integrate a function defined on an un-

bounded interval. In the next example, we explore a so-called improper in-

tegral like Z ∞



() = lim
→∞

Z 



()

Example 72 The area under the curve  =
1


from 1 to  , a constant greater

than 1, is given by

 =

Z 

1

1


 = ln − ln 1 = ln 

Hence, as  tends to infinity, so does the area under this curve. On the other

hand, the area under the curve  =
1

2
from 1 to  is given by

 =

Z 

1

1

2
 =

− 1




So as  tends to infinity, the area approaches 1. We say that the improper

integral equals 1, and we write Z ∞

1

1

2
 = 1

¤
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13.2 Exercises

Exercise 13.1 Let  () =
R 
0

−1
1+2

. Find the critical points of  and at

each critical point, determine if  has a local maximum, a local minimum, or

neither a local maximum or a local minimum.

Answer:  = 1 is a critical point,  has local minimum at  = 1

Exercise 13.2 Find the area between the graphs of () and () on the

interval [−2 5]

Answer: 16.

Exercise 13.3 Find the area of the region bounded by the curves  = 2 − 1,
 − + 2,  = 0, and  = 1.

Answer: 13
16


Exercise 13.4 Find the area of the region bounded by the curves  = −3+3,
 = ,  = −1, and  = 1.

Answer: 6

Exercise 13.5 Find the area of the region bounded by the curves  = 3
√
− 1

and  = − 1.
Answer: 1

2


Exercise 13.6 Set up and evaluate the definite integral that gives the area of

the region bounded by the graph of () = 3 and its tangent line at (1 1) .
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Answer: 27
4


Exercise 13.7 Find  0() if

a)  () =
R sin
0

√


b)  () =
R sin
0

¡
1− 2

¢


c)  () =
R 2


1




Answers:

a)
√
sin (cos)

b) cos3 

c)
1

3
32 − 1
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Natural logarithm (Exercises)

14.1 Practice Problems

14.1.1 Properties of the natural logarithmic function

Example 73 Find

a)



( ln)

b)



ln(cos)

Solution:

a)



( ln) = (1) ln+ 

1


= ln+ 1

b)



ln(cos) = − 1

cos
sin = − tan

¤

Example 74 Find

a)
R + 1

2


b)
R 

2 + 1


c)
R
tan

d)
R √

 (1 +
√
)


Check (by differentiation) if the answers are correct.

Solution:

a)
R + 1

2
 ==

R µ1

+
1

2

¶
 =  ln ||− 1


+ 
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b)
R 

2 + 1
 = 1

2
ln
¡
2 + 1

¢
+ 

c)
R
tan = − ln |cos|+  = ln | sec|+ 

d)
R 1√

 (1 +
√
)
 = 2 ln (+

√
)− ln+

14.1.2 Logarithmic differentiation

Example 75 Find the derivative of the function

() = −

Solution 76

 = −

ln  = ln− = − ln
1






=

µ
(−1) ln+ 

µ
1



¶¶
= −(ln+ 1)

(by the chain rule and by the product rule), so




= −(ln+ 1)−

¤

14.2 Exercises
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The exponential function (Exercises)

15.1 Practice Problems

15.2 Exercises

Exercise 15.1 Show that the function  =  sin  satisfies

00 − 20 + (2 + 2) = 0

for any real constanta  and 
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16

Inverse functions and inverse trig functions
(Exercises)

16.1 Practice Problems

16.2 Exercises

Exercise 16.1 Show that the function  = arctan() satisties

00 = −2 sin  cos3 
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17

L’Hospital’s rule and overview of limits
(Exercises)

17.1 Practice problems

The L’Hopital’s rule is a miracle procedure which solves all our worries about

limits. The proof of the rule is comic in its simplicity. Especially after we will

see how fantastically useful it is:

since () = () = 0 we have () = (+) and () = (+)

so that for every   0 with ( + ) = 0 the quantum L’Hopital rule

holds:

(+ )

(+ )
=

(+)


(+)


=

(+)−()


(+)−()


Now take the limit → 0. Voilá!
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Type : 00 case

Example 77 Lets prove the fundamental theorem of trigonometry again:

lim
→0

sin


= lim

→0
cos

1
= 1

Why did we work so hard for this? We used the fundamental theorem to derive

the derivatives for cos and sin at all points. In order to apply L’Hopital, we

had to know the derivative. Our work to establish the limit was not in vain.

¤

Example 78 Sometimes, we have to administer a medicine twice. Let us find

the limit lim→0
(1− cos())

2
 This limit had been pivotal to compute the deriv-

atives of trigonometric functions.

Solution: Differentiation gives

lim
→0

sin()

2

Now apply L’Hopital again.

lim
→0

sin()

2
= lim

→0
cos()

2
=
1

2

¤

Example 79 Find the limit

lim
→2

2 − 4+ 4
sin2(− 2)

Solution: this is a case where (2) =  0(2) = (2) = 0(2) = 0 but

00(0) = 2. The limit is  00(2)00(2) = 22 = 1. ¤

Example 80 (Trouble?) The limit lim→∞(2 + sin())3 is clearly 23
since we can take the sum apart. Hopital gives →∞(2 + cos())3 which
has no limit. This is not trouble since Hopital applies only if the limit to right

exists.

Type : ∞∞ case



17.1 Practice problems 119

Example 81 To find

lim
→0+

csc()

1− ln
notice that as  → 0+, both the numerator and the denominator tend to ∞.
Why? Well, sin() goes to 0 as  → 0, so csc() blows up; and also ln() →
−∞ as → 0+, so 1− ln → ∞. Now use L’Hopital’s Rule:

lim
→0+

csc()

1− ln = lim
→0+

− csc() cot()
− 1



= lim
→0+

 csc() cot()

To nd the limit, write it as

lim
→0+



sin()

1

tan()


We have

lim
→0+



sin()
= lim

→0+
1

sin()



=
1

1
= 1

but for the other factor we have

lim
→0+

1

tan()
=∞

since tan()→ 0+ as → 0+. So we have proved that

lim
→0+

csc()

1− ln =∞ ¤

Type 1 (∞−∞)
Example 82 Find

lim
→∞

p
+ ln()−√

Solution: First note that as →∞, both
p
+ ln() and

√
 go to ∞;

so we are in the ∞−∞ case. There’s no denominator, so let’s make one by

multiplying and dividing by the conjugate expression:

lim
→∞

p
+ ln()−√ = lim

→∞

³p
+ ln()−√

´
×

³p
+ ln() +

√

´

³p
+ ln() +

√

´

Using the difference of squares formula (− )(+ ), this becomes

lim
→∞

ln()³p
+ ln() +

√

´
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Now we are in the ∞∞ case of Type , so we just differentiate top and

bottom (using the chain rule on the bottom) to see that

lim
→∞

ln()³p
+ ln() +

√

´ = lim

→∞
1

1
2

1

+1√

+ln
+ 1

2
√




If you multiply the top and bottom of the fraction by x, you get

lim
→∞

1

1
2

+1√
+ln

+
√

2



We’re almost done, but we do need to take a little look at what happens to

the first fraction in the denominator as →∞:

lim
→∞

1

2

+ 1√
+ ln



This is also an∞∞ indeterminate form, so whack out another application of

L’Hopital’s Rule:

lim
→∞

1

2

+ 1√
+ ln

= lim
→∞

1

2
2

1

+1√

+ln

= lim
→∞

√
+ ln
1

+ 1

As  → ∞, the denominator 1

+ 1 goes to 1 but the numerator

√
+ ln

goes to ∞. This means that

lim
→∞

1

2

+ 1√
+ ln

=∞

Returning to our original problem, we have already found that

lim
→∞

p
+ ln()−√ = lim

→∞
1

1
2

+1√
+ln

+
√

2



Both fractions in the denominator go to ∞ as →∞, so the limit is 0. ¤
Unfortunately, it’s not always possible to use L’Hopital’s Rule on type 1

limits. In fact, the only time it can actually work is when you’re able to

manipulate the original expression to be a ratio of two quantities, as in the

above example.

Type 2 (0×±∞)

Example 83 Find lim→∞  sin(1)
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Solution: Write  = 1 then (). Now we have a limit, where the

denominator and nominator both go to zero. Answer: 1

Type  (1±∞ 00or ∞0)

Example 84 Find

lim
→0+

(sin)

Solution: Because direct substitution produces the indeterminate form 00

you can proceed as shown below. To begin, assume that the limit exists and

is equal to

 = lim→0+ (sin)
 Indeterminate form 00

ln  = ln (lim→0+ (sin)
) Take natural log of each side.

= (lim→0+ ln (sin)
) Continuity

= lim→0+ ( ln (sin)) Indeterminate form 0 · (−∞)
= lim→0+

³
ln(sin)

1


´
Indeterminate form −∞

∞

= lim→0+
µ
cot

− 1

2

¶
L’Hopital’s Rule

= lim→0+
³
−2
tan

´
Indeterminate form 00

= lim→0+
¡ −2
sec2 

¢
= 0 L’Hopital’s Rule

Now, because ln  = 0 you can conclude that  = 0 = 1 and it follows that

lim
→0+

(sin) = 1 ¤

Example 85 Can L’Hopital’s Rule be applied to lim→1
2 + 1

2+ 1
?

Solution: The answer is no. The function does not have an indeterminate

form because
2 + 1

2+ 1
|1 = 12 + 1

2 · 1 + 1 =
2

3


However, the limit can be evaluated directly by substitution:

lim
→1

2 + 1

2+ 1
=
2

3


An incorrect application of L’Hopital’s Rule would lead to the following limit

with a different value:

lim
→1

2

2
= 1 (not equal to original limit)

¤
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17.2 Exercises

Exercise 17.1 What do you get if you apply L’Hopital to the limit

lim
→0

(+ )− ()


?

Answer: Differentiate both sides with respect to . And then feel awsome!

Exercise 17.2 Find the limit () =
(

2 − 1)
sin(2)

for → 0.

Answer: 1

Exercise 17.3 For the following functions, find the limits as → 0:

a) 8 sin()

b) ( − 1)(3 − 1)
c) sin2(3) sin2(5)

d)
sin(2)

sin2()

e) sin(sin()).

Answer: a)8 b) 1
3

c) 9
25

d)1 e)1

Exercise 17.4 For the following functions, find the limits as → 1:

a) (2 − − 1)(cos(− 1)− 1)
b) ( − )(3 − 3)

c) (− 4)(4+ sin() + 8)

d)
1000 − 1
20 − 1

e)
tan2(− 1)
cos(− 1)− 1

Exercise 17.5 Find the limit

lim
→∞

(2 − − 1)√
4 + 1

HINT: first, then take the square root of the limit.
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Exercise 17.6 Find the limit

lim
→∞



(1 + )


Exercise 17.7 Use L’Hopital to compute the following limits at  = 0:

a) lim→0 ln(5) ln ||.

b) lim→0(cos()− sin())2

c) lim→0 ln | ln |1 + || ln | ln |2 + ||.

d) lim→0 (1− ) 
¡
− 3

¢
e) lim→0 ln(1 + 3)

Exercise 17.8 Apply L’Hopital’s rule to get the limit of

() =
sin(200)

sin(300)

for → 0.
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Exercise 17.9 What does L’Hopital’s rule say about

lim
→0

2 − 1




18

Applications of Integration (Exercises)

18.1 Practice Problems

Example 86 Find the volume of a right pyramid that has altitude  and

square base of side  (see Figure 18.1).

Solution: If, as shown in Figure 18.1, we introduce a coordinate line 

along the axis of the pyramid, with origin 0 as a vertex, then cross sections

by planes perpendicular to  are squares. If () is the cross sectional area

determined by the plane that intersects the axis  units from 0, then

() = (2)2 = 42

while  is a distance indicated in the figure 18.1. By similar triangles




=

2


 or  =



2

and hence

() = 42 = 4
³
2

´2
=

2

2
2

So,

 =

Z 

0

2

2
2 =

µ
2

2

¶
3

3
|0 =

1

3
2

¤

Example 87 A solid has, as its base, the circular region in the -plane

bounded by the graph of 2 + 2 = 2 where   0 Find the volume of

the solid if every cross section by the plane perpendicular to the -axis is an

equilateral triangle with one side in the base.

Solution: A typical cross section by plane  units from the origin is illus-

trated if Figure 18.2. If the point  ( ) is on the circle, then the length of a

side of the triangle is 2 and the altitude is
√
3 Hence the area () of the

pictured triangle is

() =
1

2
(2)

³√
3
´
=
√
32 =

√
3
¡
2 − 2

¢




126 18. Applications of Integration (Exercises)

Fig. 18.1. Right pyramid that has altitude 

Fig. 18.2. A typical cross section of the solid from Example 87.
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Now,

 =

Z 

−

√
3
¡
2 − 2

¢
 =

4

3

√
33

(see also Example 89)¤

Example 88 A solid’s base is the planar region in which 0 ≤  ≤ √1− 2

and its vertical cross-sections parallel to the -axis are semi-circles. Find the

volume of the solid.

Solution:

() =
1

2
2

=
1

2


µ
1

2

p
1− 2

¶2
=



8

¡
1− 2

¢


So

 =

Z 1

−1
() =



8

Z 1

−1

¡
1− 2

¢


=


4

Z 1

0

¡
1− 2

¢
 =



4
(− 1

3
3)|10

=


4

µ
1− 1

3
− 0
¶
=



6

¤

Example 89 The base of a solid is the region bounded by the ellipse 42 +

92 = 36. Find the volume of the solid given that cross sections perpendicular

to the -axis are

a) equilateral triangles,

b) squares.
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Solution:

a) The area of an equilateral triangle is
√
3
4
2 We have  = 4

3

√
9− 2 thus,

cross sectional areas are given by

() =

√
3

4

µ
4

3

p
9− 2

¶2
= 4
√
3− 4

9

√
32

Therefore

 =

Z 3

−3
() =

Z 3

−3

µ
4
√
3− 4

9

√
32
¶
 = 16

√
3

b) The area of a square is 2. We have  = 4
3

√
9− 2 Thus, cross sectional

areas are given by

() =

µ
4

3

p
9− 2

¶2
= 16− 16

9
2

Therefore

 =

Z 3

−3
() =

Z 3

−3

µ
16− 16

9
2
¶
 = 64

¤

Example 90 We can generate a circular cone of base radius  and height 

by revolving about the -axis the region below the graph of

() =



 0 ≤  ≤ 

(see Figure 18.3). Find volume of that cone by Disc Method.
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Fig. 18.3. Circular cone of base radius  and height 

Solution: We have

 =

Z 

0


³ 


´2

 =
2

2

µ
3

3

¶
|0 =

1

3
2

¤

Example 91 A manufacturer drills a hole through the center of a metal

sphere of radius 5 inches, as shown in Figure 18.4. The hole has a radius

of 3 inches. What is the volume of the resulting metal ring?

Solution: You can imagine the ring to be generated by a segment of the

circle whose equation 2 + 2 = 25 is as shown in Figure 18.5.

Because the radius of the hole is 3 inches, you can let  = 3 and solve the

equation 2 + 2 = 25 to determine that the limits of integration are  = ±4
So, the inner and outer radii are () = 3 and () =

√
25− 2 and the

volume is given by

 = 

Z 



³
[()]2 − [()]2

´


= 

Z 4

−4

µhp
25− 2

i2
− [3]2

¶


= 

Z 4

−4
(16− 2)

= 

∙
16− 3

3

¸4
−4

=
256

3
 cubic inches.
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Fig. 18.4. Solid of revolution

Fig. 18.5. Plane region.
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Fig. 18.6. Side of the barrel.

¤

Example 92 A wine cask has a radius at the top of 30 cm. and a radius at

the middle of 40 cm. The height of the cask is 1 m. What is the volume of the

cask (in ), assuming that the shape of the sides is parabolic?

Solution: We will lay the cask on its side to make the algebra easier (see

Fig. 18.6) We need to find the equation of a parabola with vertex at (0 40)

and passing through (50 30). We use the formula:

(− )2 = 4( − )

Now ( ) is (0 40) so we have:

2 = 4( − 40)

and the parabola passes through (50 30), so

(50)2 = 4(30− 40)

and

2500 = 4(−10)
This gives

4 = −250
So the equation of the side of the barrel is

2 = −250( − 40)

that is,

 = − 2

250
+ 40
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Fig. 18.7. The barrel as a rotated parabola.

Fig. 18.8.
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Fig. 18.9. Watermelons.

We need to find the volume of the cask which is generated when we rotate this

parabola between  = −50 and  = 50 around the -axis (see Fig.?? ).

Vol = 

Z 



2

= 

Z 50

−50

µ
− 2

250
+ 40

¶2


= 

Z 50

−50

µ
4

62 500
− 8

2

25
+ 1600

¶


= 

∙
5

312 500
− 8

3

75
+ 1600

¸50
−50

= 2

Ã
(50)5

312 500
− 8 (50)

3

75
+ 1600 (50)

!
= 4 251 6× 105

So the wine cask will hold 42516 . ¤

Example 93 A watermelon has an ellipsoidal shape with major axis 28 cm.

and minor axis 25 cm. (see Fig.18.9). Find its volume.

Before calculus, one way of approximating the volume would be to slice the

watermelon (say in 2 cm. thick slices) and add up the volumes of each slice

using  = 2. Interestingly, Archimedes (the one who famously jumped out

of his bath and ran down the street shouting “Eureka! I’ve got it”) used this

approach to find volumes of spheres around 200 . The technique was almost

forgotten until the early 1700’s when calculus was developed by Newton and

Leibniz.

We see how to do the problem using both approaches.
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Fig. 18.10. Slices of a particular watermelon.

Historical Approach: Because the melon is symmetrical, we can work out

the volume of one half of the melon, and then double our answer. The radii for

the slices for one half of a particular watermelon are found from measurement

to be:

0 64 87  103  113  120  124  125

The approximate volume for one half of the melon using slices 2 cm. thick

would be:

 =  × [642 + 872 + 1032 + 1132 + 1202 + 1242 + 1252]× 2
=  × 804 44× 2 = 50544

So the volume for the whole watermelon is about 50544 × 2 = 10109 cm3 =
101 .

“Exact” Volume (using Integration): We are told the melon is an

ellipsoid. We need to find the equation of the cross-sectional ellipse with major

axis 28 cm. and minor axis 25 cm. We use the formula

2

2
+

2

2
= 1

where  is half the length of the major axis and  is half the length of the

minor axis. For the volume formula, we will need the expression for 2 and it
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is easier to solve for this now (before substituting our  and ).

2

2
+

2

2
= 1

22 + 22 = 22

22 = 22 − 22 = 2(2 − 2)

so

2 =
2

2
(2 − 2)

Since  = 14 and  = 125, we have:

2 =
1252

142
(142 − 2) = 156 25− 0797 192

NOTE: The  and  that we are using for the ellipse formula are not the same

 and  we use in the integration step. They are completely different parts of

the problem.

Using this, we can now find the volume using integration. (Once again we

find the volume for half and then double it at the end).

 = 

Z 14

0

2

= 

Z 14

0

¡
156 25− 0797 192¢ 

= 
£
156 25− 0265 733¤14

0

= 1458 3 = 458065 cm3

So the watermelon’s total volume is 2× 458065 = 9161 cm3 or 9161 . This
is about the same as what we got by slicing the watermelon and adding the

volume of the slices. ¤
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Example 94 Let R be the region in which 24 ≤  ≤ 2 +
√
 Find the

volume of the solid obtained by revolving R about the -axis.

Solution:

 =
2· ¡

2 +
√
 − 24

¢


  

= 2(2 + 32 − 34)
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 = 2

Z 4

0

(2 + 32 − 34)

= 2

µ
2 − 1

16
4 +

2

5

5
2

¶
|40 =

128

5


¤

Example 95 Find the volume of the solid of revolution formed when the re-

gion bounded between  = −25,  = 44,  = cos+ 2 and  = 0 is revolved

vertically around the -axis.

Solution:

 = 

Z 44

−25
(cos() + 2)2 = 

µ
9

2
+ 4 sin+

1

4
sin 2

¶
|44−25 = 29544

¤

Example 96 Sketch the region bounded by  =
√
  = 4, and  = 0. Use the

shell method to find the volume of the solid generated by revolving the region

about the -axis
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Fig. 18.11. Solid of revolution defined in the Example 95

Solution 97

 =

Z 4

0

2
√
 = 2

Z 4

0

32 = 2

µ
2

5
52

¶
|40 =

128

5


The same result can be obtained by the disc method as follows:

 =

Z 2

0


³
(4)2 − ¡2¢2´  = 128

5


¤

Example 98 Sketch the region bounded by  = 2 and  = 13 Use the

shell method to find the volume of the solid generated by revolving the region

about the -axis
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Solution:

The points of intersection of the curves  = 2 and  = 13 are (0 0) and

(1 1)

 =

Z 1

0

2
h
13 − 2

i
 = 2

Z 1

0


h
13 − 2

i


= 2

µ
3

7
73 − 1

4
4
¶
|10 =

5

14


¤

Example 99 Sketch the region bounded by  = 2 and  = 2 −  Use the

shell method to find the volume of the solid generated by revolving the region

about the -axis

Solution:

We first find the points of intersection of the curves  = 2 and  = 2− 

2 = 2− 

(+ 1)(+ 2) = 0

 = 1 or  = −2
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The curves intersect at (1 1) and (−2 4)

 =

Z 1

0

2 (
√
 − (−√))  +

Z 4

1

2 ((2− )− (−√)) µ
8

5


5
2

¶
|10 +

µ
22 − 2

3
3 +

4

5


5
2

¶
|41

=
8

5
 +

64

5
 =

72

5


The volume of the same solid can be found by the washer method as follows:Z 1

−2
((2− )2 − (2)2) = 72

5


¤

18.2 Exercises

Exercise 18.1 Find the volume of the solid of revolution formed when the

region bounded between  = 1,  = 3,  = 2 and  = 0 is revolved vertically

around the -axis.

Answer: 243
5

Exercise 18.2 Find the volume of the solid of revolution formed when the

region below the curve  = 2 − 1, between  = 1 and  = 3, and above  = 0

is revolved around the -axis.

Answer: 496
15


Exercise 18.3 Find the volume of the solid of revolution formed when the

region bounded between  = 0,  = ,  = sin() and  = 0.

Answer: 1
2
2

Exercise 18.4 Find the volume of the solid of revolution formed when the

region bounded between  = 0,  = 2,  = cos() and  = 0.

Answer: 1
4
2

Exercise 18.5 Find the volume of the solid of revolution formed when the

region bounded between  = 4,  = 2,  = sin() and  = 12.
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Answer: 
¡
1
16
 + 1

4

¢
Exercise 18.6 Find the volume of the solid of revolution formed when the

region below the curve  = 2, between  = 3 and  = 5, and above  = 2 is

revolved around the -axis.

Answer: − ¡3 − 5 + 8
¢

Exercise 18.7 Find the volume of the solid of revolution formed when the

region below the curve  = 4
√
, between  = 4 and  = 9, and above  = 4 is

revolved around the line  = 2.

Answer: 952
3


Exercise 18.8 Find the volume of the solid of revolution formed when the

region bounded between  = +5 and  = 2 +3 is revolved vertically around

the line  = 2.

HINT: Find the intersection points first.

Answer: 117
5


Exercise 18.9 Find the volume of the solid of revolution formed when the

region bounded between  =  and  = 2 is revolved horizontally around the

-axis.

Answer: 1
6


Exercise 18.10 Find the volume of the solid of revolution formed when the

region bounded between  = 2 − 2 and  = ( − 1)2 is revolved horizontally
around the y-axis.

Answer: 16
3


Exercise 18.11 Find the volume of the solid of revolution formed when the

region bounded between  = 2− 6 and  = (− 3)2 is revolved horizontally

around the line  = 1.

Answer: 8

Exercise 18.12 Find the volume of the solid of revolution formed when the

region bounded between  = +2 and  = 2 is revolved vertically around the

line  = −2.

Answer: 162
5
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Exercise 18.13 Find the volume of the solid of revolution formed when the

region bounded between  =  and  = 2 is revolved horizontally around the

line  = −1.
Answer: 1

2


Exercise 18.14 Find the volume of the solid of revolution formed when the

region bounded between  = 2 and  = 2 is revolved horizontally around the

line  = −3.
Answer: 32

3


Exercise 18.15 Sketch the region bounded by  =  and  = 5 and  = 0

Use the shell method to find the volume of the solid generated by revolving the

region about the -axis

Answer: 250
3


Exercise 18.16 Sketch the region bounded by  =
√
 ,  = 0 and  = 1

Use the shell method to find the volume of the solid generated by revolving the

region about line  = 2

Answer: 5
6


Exercise 18.17 Consider a cap of thickness  that has been sliced from a

sphere of radius  (see figure). Verify, that the volume of the cap is

2(3 − )3

using:

a) the washer method,

b) the shell method,

c) general slicing method.

Exercise 18.18 The following integrals match the volumes of solids (Fig.

18.13). Each integral matches exactly one solid.

Integral Enter 1-6R 1
0
2R 1
0
R 1

0
(1− 2)R 1

0
 sin2 () R 1
0
(1 + )2R 1

0
 cos2 () 
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Fig. 18.12.

Exercise 18.19 Match the volumes of solids (Figure 18.14 ).

Integral Enter 1-6R 1
0
4R 1

0
R 1

0
(4 + sin(4))R 1
0
−4

2
R 1

0
2R 1

0
(1− )2

Exercise 18.20 The kiss is a solid of revolution for which the radius at height

 is

2
√
1− 
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Fig. 18.13. Solids for exercise 18.18

Fig. 18.14. Solids for exercise 18.19
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and where −1 ≤  ≤ 1. What is the volume of this solid? The name ”kiss” is
the official name for this quartic surface.
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Arc Length and Surface Area (Exercises)

19.1 Practice Problems

Example 100 Find the arc length of the graph of the function () =

ln (cos) over the interval 1 ≤  ≤ 

2


Solution:

 0() = − sin
cos

= tan

1 +
¡
 0()

¢2
=

1

cos2 
sin2 + 1 =

1

cos2 


 =

Z 



q
1 + ( 0())2 =Z 3

0

1

cos
 =

µ
1

2
ln (2 sin+ 2)− 1

2
ln (2− 2 sin)

¶
|30

=
1

2
ln
³√
3 + 2

´
− 1
2
ln
³
2−
√
3
´
≈ 1 317 0

¤
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Fig. 19.1.

Example 101 Find the area of the surface obtained by revolving the graph of

3 on [0 1] about the  axis.

Solution: We find that  0() = 32 and
q
1 + ( 0())2 =

√
1 + 94 so

 = 2

Z 1

0

p
1 + 943

=


2

Z 1

0

√
1 + 9 ( = 4  = 43)

=


18

Z 9

0

√
1 +  ( =

1

9
  =

1

9
)

=
1

18


µ
20

3

√
10− 2

3

¶
≈ 3 563 1

¤

Example 102 (Surface area of a spherical cap) A spherical cap is pro-

duced when a sphere of radius  is sliced by a horizontal plane that is a vertical

distance  below the north pole of the sphere, where 0 ≤  ≤ 2 (Figure 19.2).
We take the spherical cap to be that part of the sphere above the plane, so that

 is the depth of the cap. Show that the area of a spherical cap of depth  cut

from a sphere of radius  is 2.
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Fig. 19.2. A spherical cap
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Solution: To generate the spherical surface, we revolve the curve () =√
2 − 2 on the interval [− ] about the -axis. The spherical cap of height 

corresponds to that part of the sphere on the interval [− ], for 0 ≤  ≤ 2.
Noting that  0() = − ¡2 − 2

¢−12
, the surface area of the spherical cap of

height  is

 =

Z 



2()

q
1 + ( 0())2

= 2

Z 

−

p
2 − 2

r
1 +

³
− (2 − 2)

−12
´2


= 2

Z 

−

r
2

2 − 2
+ 1
p
2 − 2

= 2

Z 

−
 = 2

¤

Remark 103 Notice that  is not differentiable at ±. Nevertheless, in this
case, the surface area integral can be evaluated using methods you know.

19.2 Exercises

Exercise 19.1 A cable is to be hung between two poles of equal height that

are 20m. apart. Suppose that the cable takes the shape of

() = 5
³
10 + −10

´


Find the length of the cable.
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Answer: ≈ 23504
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Techniques of integration, part one
(Exercises)

20.1 Basic Integration Formulas

1.
R
 = + 

2.
R
 = +1

+1
+   6= 1

3.
R
cos  = 1


sin + 

4.
R
sin  = − 1


cos + 

5.
R
sec2  = 1


tan + 

6.
R
csc2  = − 1


cot + 

7.
R
sec  tan  = 1


sec + 

8.
R
csc  cot  = −1


csc + 

9.
R
 = 1


 + 

10.
R
1

 = ln ||+

11.
R

1√
2−2 = arcsin



+ 

12.
R

1
2+2

 = 1

arctan 


+ 

(20.1)

20.2 Practice Problems

20.2.1 Integration by substitution

The first principle of substitution is:

When you have a quantity to a power,

let  equal that quantity and try to get .
(20.2)

Warning:  = the quantity, not the quantity to the power.

Example 104 Find Z
2
¡
23 + 5

¢2


Solution: Here we have quantity to a power. We can try to use the Power

Rule. Z
2
¡
23 + 5

¢2
 =

1

6

Z ¡
23 + 5

¢2 



¡
23 + 5

¢
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Let

 = 23 + 5

then we need to computeZ
2 =

3

3
+  =

1

18

¡
23 + 5

¢3
+ 

This is the answer, which we can check by differentiating:





µ
1

18

¡
23 + 5

¢3
+ 

¶
= 2

¡
23 + 5

¢2
which is the original integrand, verifying that the answer is correct. ¤

Example 105 Find Z
2 cos 3

(5 + sin 3)4


Solution: Again we have a quantity to a power, so we let  equal the

quantity and try to get 

 = 5 + sin 3  = 3cos 3

To avoid unnecessary confusion, we move the “2” outside the integral and

rewrite this as

2

3

Z
1

(5 + sin 3)4



(5 + sin 3) 

=
2

3

Z
1

4
 = −2

9
−3 + 

=
−2

9 (5 + sin 3)3
+ 

This is the answer which you check by differentiating:





µ −2
9 (5 + sin 3)3

+

¶
= 2

cos 3

(sin 3+ 5)4


¤

Example 106 Find Z
3 sin(54 + 6)
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Here, we do not have a quantity to a power, so the first principle of substi-

tution does not apply. Hence, we turn to the second principle of substitution.

When you do not have a quantity to a power,

but you do have a trig function of a quantity

let  equal that quantity and try to get .

(20.3)

Later, this same principle will equally apply to other kinds of functions, such

as exponential, logarithmic, inverse trig, etc.

Solution: Let  = 54 + 6 then  = 203 ThenZ
3 sin(54 + 6) =

1

20

Z
sin

= − 1
20
cos+ 

= − 1
20
cos
¡
54 + 6

¢
+ 

This is the answer, which we can check by differentiating:





µ
− 1
20
cos
¡
54 + 6

¢
+ 

¶
= 3 sin

¡
54 + 6

¢


¤

Example 107 Find Z
9 sec2(3

√
+ 5)√




Solution: We recognize that we have a formula for
R
in (20.1), so we move

toward putting the problem into this form. Let

 = 3
√
+ 5  =

3

2

1√



We first move the “9” outside of the integral and move the 1√

next to the 

9

Z
sec2(3

√
+ 5)

1√



Next multiply by
2

3
· 3
2
, move the unwanted

2

3
outside of the integral, simplify

and substitute.
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9

Z
sec2(3

√
+ 5)

1√

 = 9

Z
sec2(3

√
+ 5) · 3

2

1√



= 9
2

3

Z
sec2(3

√
+ 5)

2

3
· 3
2

1√



= 6

Z
sec2 

We apply the appropriate formula from (20.1) getting

6 tan+ = 6 tan
¡
3
√
+ 5

¢
+

This is the answer, which you should check by differentiating, but we shall not

here. ¤

20.2.2 When substitution does not work

Sometimes the “obvious” choice of substitution does not work. This method

of substitution allows you to see as soon as possible that it does not work, and

you must look for an alternative method.

Example 108 Find Z
(23 + 5)2

Solution: We see we have a quantity to a power, so (as in Example 104)

we try,

 = 23 + 5  = 62

But right here we see we cannot get 2 since we only have an . Thus we must

try something else. The thing to do here is to square out the quantity and

then multiply through with the .Z
(23 + 5)2 =

Z
(46 + 203 + 25)

=

Z ¡
47 + 204 + 25

¢


=
1

2
8 + 45 +

25

2
2 + 

¤

Example 109 Find
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a)
R 3

1 + 4


b)
R 

1 + 4


Solution:

a) We have a quantity in the denominator, so we try

 = 1 + 4  = 43

We see with the 3 in the numerator we can get , and we proceed to

do it. Z
3

1 + 4
 =

1

4

Z
1

1 + 4




¡
4
¢
 =

1

4

Z
1




=
1

4
ln ||+  =

1

4
ln
¡
1 + 4

¢
+ 

b) If we were to try  = 1+4 again, we see with only an  in the numerator,

we cannot get  = 43. In searching for an alternate approach, we

might ask, how do we make use of the single  in the numerator? If

we observe  is the crucial part of the derivative of 2, and that in the

denominator 4 = (2)2, then we solve the problem with the surprising

substitution

 = 2  = 2

Then Z


1 + 4
 =

1

2

Z
1

1 + (2)
2





¡
2
¢


=
1

2

Z


1 + 2
+  =

1

2
arctan(2) + 

¤

20.3 Very Famous Example

Example 110 (Area of a circle) Verify that the area of  circle of radius

a is 2.
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Fig. 20.1. A quarter-circle.

Solution: The function () =
√
2 − 2 describes the upper half of a

circle centered at the origin with radius  (Figure 20.1). The region under this

curve on the interval [0 ] is a quarter-circle. Therefore, the area of the full

circle is

4

Z 

0

p
2 − 2

Because the integrand contains the expression 2−2, we use the trigonometric
substitution  =  sin . As with all substitutions, the differential associated

with the substitution must be computed

 =  sin  implies that  =  cos 

Notice that the new variable  plays the role of an angle.

The substitution works nicely, because when  is replaced by  sin  in the

integrand, we have p
2 − 2 =

q
2 − ( sin )2

=

q
2
¡
1− sin2 ¢

=
√
2 cos2 

= | cos |
=  cos 

We also change the limits of integration: When  = 0,  = arcsin 0 = 0; when

 = ,  = arcsin() = arcsin(1) = 2. Making these substitutions, the
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integral is evaluated as follows:

4

Z 

0

p
2 − 2 = 4

Z 2

0

 cos  ·  cos 

= 42
Z 2

0

cos2 

= 42
µ
1

2
 +

1

4
sin 2

¶
|20

= 2

20.4 Exercises

Exercise 20.1 Evaluate the following indefinite integrals:

1.
R ¡
38 + 2+ −3

¢


2.
R ¡
82 + 3−4 + −8

¢


3.
R
( + 2) 

4.
R ¡

−2 + 82
¢


5.
R
(sin 2+ 3) 

6.
R
(cos 3− 2+ 1) 

7.
R ¡

− + 2cos+ 52
¢


8.
R ¡

3 − 8 sin 2+ −4
¢


Exercise 20.2 Evaluate each of the integrals in by making the indicated sub-

stitution, and check your answers by differentiating

1.
R
2(2 + 4)32;  = 2 + 4

2.
R
(+ 1)(2 + 2− 4)−4;  = 2 + 2− 4

3.
R

27+1

(8+4−1)2 ;  = 8 + 4 − 1

4.
R


1+4

;  = 2

5.
R
sec3 
tan3 

;  = tan 
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6.
R
tan;  = cos

Exercise 20.3 Evaluate the following definite integrals:

1.
R 1
−1
√
+ 2

2.
R 3
2


−1

3.
R 2
0

√
2 + 1

4.
R 4
2

√
2 + 1

5.
R 1
0


2


6.
R 1
0



1 + 2


7.
R 6
0

(sin 3 + ) 

8.
R 
0
sin(2 + 4)

9.
R 2
0

sin cos

10.
R 2
4

cot 

Exercise 20.4 Evaluate the following indefinite integrals:

1.
R
(+ 1) cos

2.
R
 cos (5) 

3.
R
2 cos

4.
R
(+ 2) 

5.
R
ln (10) 

6.
R
2 ln

7.
R
23

8.
R 1

3
cos

1




9.
R
 ln
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10.
R
ln(9 + 2)

Exercise 20.5 Evaluate the definite integrals:

1.
R 2
1
 ln

2.
R 3
1
ln3

3.
R 1
0


4.
R 
1
(ln)2 

5.
R 2
0

sin (2) cos

6.
R 
− 

2 sin (2) 

7.
R 1
0
 arctan

8.
R 1
0

3√
2 + 1



9.
R 2
0
(8 + 5) sin(5)

10.
R 1
0
arccos

¡√

¢
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Exercise 20.6 (Integrating by parts) Match the integral on the left, the

correct substitution in the center and the evaluated integral on the right:

R
 cos  =   = −1

4
cos 4 − 1

27
−3

¡
92 + 6+ 2

¢
+ R

 sin 4  = 2  = −1
3
−3 1

2
ln2 +R

2  =   = −1
4
cos 4 1

16
sin 4− 1

4
 cos 4+ R

 ln  = ln  = ln 1
3


3
+ R

2 ln  =   = sin cos+  sin+ 

R ln


  = ln  = 1
2
2 1

17
 sin 4− 4

17
 cos 4+ 

R
2−3  =   = 1

2
2 1

3
3 ln− 1

9
3 + R

2
3
  = ln  = 1

3
3 1

2
2 ln− 1

4
2 + R

 sin 4  = 3  = 32 1
4
2 (2− 1) + 
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Exercise 20.7 (Integrating by parts) Match the integral on the left, the

correct substitution in the center and the evaluated integral on the right:R
2 cos  = sin  = −1

2
cos 2 

¡
ln2 − 2 ln+ 2¢+ R

cos cos 2  = (ln)2   =  1
5
2 (2 cos+ sin) + R

sin sin 2 =  = 2  = 1
2
sin− 1

6
sin 3+ R

4 arccos =  = 2  = sin 1
27
3
¡
92 − 6+ 2¢+ R

3
2
  = ln(sin)  = sin (sin) (ln (sin)− 1) + R

(ln)2   =  cos  =  1
2


2 ¡
2 − 1¢+ R

23  = 2  = 1
2


2 1
2
sin+ 1

6
sin 3+ R

cos ln(sin) =  = cos  = 1
2
sin 2 4 arccos− 4√1− 2 + R

 sin2  = 2  = 1
3
3 −1

2
cos2 + 
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Exercise 20.8 (Integrating by parts) Match the integral on the left, the

correct substitution in the center and the evaluated integral on the right:

R 1
0
 sin 2  = 2  = sin 10 ln 10− 10R 

0
2 cos  =   = − 1


cos 2 ln 2− 3

4R 1
0
 cos  =   = 1

2
sin 2 1

4
sin 2− 1

2
cos 2R 1

0
3  = ln  = 1

2
2 0R 1

0
 cos 2  =   = 1


sin − 2

2R 10
0
ln  =   = 1

3
3 2

9
3 + 1

9R 2
1
 ln  = ln  =  −4R 1

0
 sin  =  = 1
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Techniques of integration, part two
(Exercises)

21.1 Trigonometric Substitutions

Trigonometric substitution is a technique for converting integrands to trigono-

metric integrals. For example, we can use the substitution  =  sin  for in-

tegrands containing radicals such as 2 − 2 . These substitutions convert an

integral in the original variable  to an integral in the new variable  This new

integral will involve trigonometric functions. After evaluating the new integral,

you convert your answer back to the original variable. You can conveniently

represent these substitutions by right triangles, as shown in the examples. For

definite integrals, you can also convert the limits of integration to the new

variable  , thus avoiding the need to return to the original variable.

21.1.1 The Sine Substitution

A sine substitution is motivated by the identity

1− sin2  = cos2 
If we define  according to

 = sin 

then notice, that

 = cos 

and

1− 2 = cos2 

The relationship between the variables  and  may be represented by a right

triangle
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From this right triangle we can easily read off all of the six trigonometric

functions of  in terms of 

Example 111 Find the integralZ p
1− 2

Solution: When we replace  with sin  we haveZ p
1− 2 =

Z √
cos2  cos 

=

Z
cos2  =

1

2

Z
(1 + cos 2) 

=
1

2
( + sin  cos ) + 

Now we are ready to express the the result in terms of the original variable  :Z p
1− 2 =

1

2

³
arcsin+ 

p
1− 2

´
+ 

¤

Example 112 Find the integralZ √
4− 2




Solution: When we replace  with 2 sin  we have

 = 2 sin 

 = 2 cos 

and Z √
4− 2


 =

Z √
4 cos2 

2 sin 
2 cos 

= 2

Z
cos2 

sin 
 = 2

Z
1− sin2 
sin 



= 2

Z
(csc  − sin ) 

= 2 ln |csc  − cot |+ 2cos  + 
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In terms of the original variable 

Z √
4− 2


 = 2 ln

¯̄̄
2−

p
4− 2

¯̄̄
− 2 ln ||+

p
4− 2 + 

¤

21.1.2 The Tangent Substitution

A tangent substitution is motivated by the identity

1 + tan2  = sec2 

If we define  according to

 = tan 

then

 = sec2 

and

1 + 2 = sec2 

The relationship between the variables  and  may be represented by a right

triangle

From this right triangle we can easily read off all of the six trigonometric

functions of  in terms of 

Example 113 Evaluate Z
1

(1 + 2)
2
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Solution: When we replace  with tan  we have

 = sec2 

1 + 2 = sec2 

and Z
1

(1 + 2)
2
 =

Z
1

sec4 
sec2 

=

Z
cos2 

=
1

2
( + sin  cos ) + 

Now we are ready to express the result in terms of the original variable Z
1

(1 + 2)
2
 =

1

2

µ
arctan+

√
1 + 2

1√
1 + 2

¶
+ 

=
1

2

µ
arctan+



1 + 2

¶
+ 

¤
Now we can consider a slightly more complicated example.

Example 114 Find Z p
9 + 42

Solution:

2 = 3 tan 

 =
3

2
sec2 

9 + 42 = 9 sec2 

So Z p
9 + 42 =

Z √
9 sec2 

3

2
sec2  =

9

2

Z
sec3 

=
9

2
· 1
2
(sec  tan  + ln |sec  + tan |) + 
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Now, in terms of the original variable  we haveZ p
9 + 42

=
9

4

µ
1

3

p
9 + 42 · 2

3
+ ln

¯̄̄̄
1

3

p
9 + 42 +

2

3


¯̄̄̄¶
+ 

=
9

4

µ
2

9

p
9 + 42 + ln

¯̄̄p
9 + 42 + 2

¯̄̄
− ln 3

¶
+ 

=
1

4

³
2
p
9 + 42 + 9 ln

¯̄̄p
9 + 42 + 2

¯̄̄´
+ 

¤

The Secant Substitution

A secant substitution is motivated by the identity

sec2  − 1 = tan2 

If we define  according to

 = sec 

then notice that

 = sec  tan 

and

2 − 1 = tan2 
The relationship between the variables  and  may be represented by an

associated right triangle

From this right triangle we can easily read off all of the six trigonometric

functions of  in terms of 

Example 115 Evaluate Z
1

2
√
2 − 1
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Solution: As

 = sec 

 = sec  tan 

2 − 1 = tan2 

we have

Z
1

2
√
2 − 1 =

Z
sec  tan 

sec2  tan 


=

Z
1

sec 
 =

Z
cos 

= sin  + 

=

√
2 − 1


+ 

¤
Let us consider slightly more complicated example:

Example 116 Find Z


 (2 − 2)32


Solution: Here we want to substitute

 =
√
2 sec 

That makes

 =
√
2 sec  tan 

2 − 2 = 2 sec2  − 2 = 2 tan2 

The right triangle associated with that substitution is shown below:
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Now let us tale the integralZ


 (2 − 2)32
 =

Z √
2 sec  tan √

2 sec  · 2√2 tan3 
=

1

2
√
2

Z
1

tan2 


=
1

2
√
2

Z
cot2 

=
1

2
√
2

Z ¡
csc2  − 1¢ 

=
1

2
√
2
(− cot  − ) + 

and finallyZ


 (2 − 2)32
 = − 1

2
√
2

Ã √
2√

2 − 2 + arcsec
√
2

!
+ 

¤

21.1.3 Completing a square

Now let us consider an example which involves more general quadratic expres-

sion. Let us find the integral Z
√

5− 4− 2


First let’s complete a square

5− 4− 2 = 5− ¡2 + 4+ 4¢+ 4 = 9− (+ 2)2
which gives Z

√
5− 4− 2

=

Z
q

9− (+ 2)2


Now, we can use the substitution

+ 2 = 3 sin 

 = 3 cos 

9− (+ 2)2 = 9 cos2 
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The relationship between the variables  and  may be represented by an

associated right triangle of the following form:

Now, we can find thatZ
q

9− (+ 2)2
=

Z
3 sin  − 2
3 cos 

3 cos 

=

Z
(3 sin  − 2) 

= −3 cos  − 2 + 

= −
q
9− (+ 2)2 − 2 arcsin

µ
+ 2

3

¶
+ 

Example 117 (An Application of Arc Length) A thin wire is in the shape

of the parabola  =
1

2
2 0 ≤  ≤ 1 What is the length of the wire?

Solution: The derivative is 0 = , and hence, the formula for arc length

gives

 =

Z 1

0

q
1 + (0)2 =

Z 1

0

p
1 + 2

We then use the trigonometric substitution

 = tan   = sec2  and hence
p
1 + 2 =

p
1 + tan2  = sec

p
1 + 2

The indefinite integral becomesZ 1

0

p
1 + 2 =

Z
sec 

¡
sec2 

¢
 =

Z
sec3 

Rather than return to the variable  , we can use the equation  = tan  to

convert the limits of integration:

When  = 0,  = 0, and when  = 1,  = 4. Hence, we have the interesting

conclusion that

 =

Z 1

0

p
1 + 2 =

Z 2

0

sec3 
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Using integration by parts twice, you obtain the formula for the right-hand

integral, and we have the final answer:

 =
1

2
[sec  tan  + ln |sec  + tan |]40

=
1

2
ln
³√
2 + 1

´
+
1

2

√
2 ≈ 1147 8

¤

21.2 L’Hopital’s method and partial fractions

We would love to be able to integrate any rational function

() =
()

()

where   are polynomials. This is where partial fractions come in. The

partial fraction method writes ()() as a sum of functions of the type

which we can integrate. This is an algebra problem. Here is an important

special case: In order to integrateZ
1

(− )(− )


write
1

(− )(− )
=



(− )
+



(− )

and solve for  .

In order to solve for  , write the right hand side as one fraction again



(− )
+



(− )
=

(− ) +(− )

(− )(− )

We only need to look at the nominator:

1 = −+−

In order that this is true we must have + = 0, − = 1. This allows

us to solve for  .

Example 118 To integrate Z
2

1− 2
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we can write
2

1− 2
=

1

1 + 
+

1

1− 

and integrate each termZ
2

1− 2
 = ln(1 + )− ln(1− )

¤

Example 119 Integrate Z
5− 2

2 − 5+ 6

Solution: The denominator is factored as (− 2)(− 3). Write
5− 2

2 − 5+ 6 =


− 3 +


− 2 

Now multiply out and solve for , :

(− 2) +(− 3) = 5− 2
This gives the equations + = −2, −2− 3 = 5. From the first equation

we get  = − − 2 and from the second equation we get 2 + 4− 3 = 5 so

that  = −1 and so  = −1. So, we have obtained
5− 2

2 − 5+ 6 = −
1

− 3 −
1

− 2
and can integrate:Z

5− 2
2 − 5+ 6 = − ln |− 3|− ln |− 2|+ 

Actually, we could have got this one also with substitution. How? ¤

Example 120 Integrate Z
1

1− 42

Solution: The denominator is factored as (1− 2)(1 + 2). Write
1

1− 42 =


1− 2 +


1 + 2


We get  = 14 and  = −14 and get the integralZ
() =

1

4
ln |1− 2|− 1

4
ln |1 + 2|+  ¤
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There is a fast method to get the coefficients based on L’Hospital’s rule

If  is different from , then the coefficients ,  in

()

(− )(− )
=



− 
+



− 

are

 = lim→(− )() =
()

(− )
  = lim→(− )() =

()

(− )


Proof. If we multiply the identity with −  we get

()

(− )
= +

(− )

− 

Now we can take the limit →  without peril and end up with

 = ()(− )

Cool, isn’t it? This L’Hopital’s method can save you a lot of time!

Especially when you deal with more factors and where sometimes complicated

systems of linear equations would have to be solved. Remember

Math is all about elegance and does not use complicated

methods if simple ones areavailable.

Example 121 Find the anti-derivative of

() =
2+ 3

(− 4) (+ 8)
Solution: We write

2+ 3

(− 4) (+ 8) =


− 4 +


+ 8

Now  = 2∗4+3
4+8

= 11
12
 and  =

2∗(−8)+3
(−8−4) =

13
12
 We have

2+ 3

(− 4) (+ 8) =
1112

− 4 +
1312

+ 8
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The integral is
11

12
ln |− 4|+ 13

12
ln |+ 8|+ 

¤
Here is an example with three factors:

Example 122 Find the anti-derivative of

() =
2 + + 1

(− 1)(− 2)(− 3) 

Solution: We write

2 + + 1

(− 1)(− 2)(− 3) =


− 1 +


− 2 +


− 3 

Now

 =
12 + 1 + 1

(1− 2)(1− 3) =
3

2
  =

22 + 2 + 1

(2− 1)(2− 3) = −7

 =
32 + 3 + 1

(3− 1)(3− 2) =
13

2

The integral is

3

2
ln(− 1)− 7 ln(− 2) + 13

2
ln(− 3) + 

¤

21.3 Some famous examples

Example 123 (Circumference of a circle) Confirm that the circumfer-

ence of a circle of radius  is 2.

Solution: The upper half of a circle of radius  centered at (0 0) is given

by the function () =
√
2 − 2 for || ≤ 

So we might consider using the arc length formula on the interval [− ] to
find the length of a semicircle. However, the circle has vertical tangent lines at

 = ± and  0(±) is undefined, which prevents us from using the arc length

formula. An alternative approach is to use symmetry and avoid the points

 = ±. For example, let’s compute the length of one-eighth of the circle on
the interval [0 

√
2] (Figure 21.1).
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Fig. 21.1. One eight of the circle.

We first determine that

 0() =
√

2 − 2


which is continuous on [0 
√
2]. The length of one-eighth of the circle is

Z 
√
2

0

q
1 + ( 0())2

=

Z 
√
2

0

s
1 +

µ
√

2 − 2

¶2


= 

Z 
√
2

0

√
2 − 2

=  arcsin



|
√
2

0

=  arcsin
1√
2
=



4

It follows that the circumference of the full circle is 8
4
= 2 units.
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Fig. 21.2. A sphere

Example 124 Find the area of the spherical surface of radius  obtained by

revolving the graph of  =
√
2 − 2 on [− ] about the  axis (see Figure

21.2).

Solution: We have p
2 − [ 0()]2 = √

2 − 2


so the area is Z 

−
2
p
2 − 2

√
2 − 2

 = 2

Z 

−
 = 42

which is the usual value for the area of a sphere.

¤

Example 125 The disk with radius 1 and center (4 0) is revolved around they

 axis. Sketch the resulting solid and find its volume1.

Solution: The doughnut-shaped solid is shown in Fig. 21.3. We observe

that if the solid is sliced in half by a plane through the origin perpendicular to

they  axis, the top half is the solid obtained by revolving about they  axis

the region under the semicircle

 =
p
1− (− 4)2

1Mathematicians call this a solid torus. The surface of this solid (an "inner tube") is a torus.
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Fig. 21.3. The disk (− 4)2 + 2 ≤ 1 is revolved about they axis.

on the interval [3 5] The volume of that solid is

 = 2

Z 5

3


p
1− (− 4)2

= 2

Z 1

−1
(+ 4)

p
1− 2 ( = − 4)

= 2

Z 1

−1

p
1− 2+ 8

Z 1

−1

p
1− 2

Now
R 1
−1 
√
1− 2 = 0 because the function () = 

√
1− 2 is odd.

On the other hand,
R 1
−1
√
1− 2 is just the area of a semicircular region

of radius 1-that is, 2-so the volume of the upper half of the doughnut is

8 · (2) = 42, and the volume of the entire doughnut is twice that, or 82.
(Notice that this is equal to the area  of the rotated disk times the circum-

ference 8 of the circle traced out by its center (4 0)) ¤

21.4 Exercises

Exercise 21.1 Evaluate the following integrals:

1.
R
sin3  cos3 

2.
R
sin2  cos5 
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3.
R 2
0
sin4 

4.
R 2
0

sin2  cos4 

5.
R 4
0

sin2  cos 2

6.
R
cos 2 sin

7.
R
sin 4 sin 2

8.
R 2
0
sin 5 sin 2

Exercise 21.2 Evaluate the following integrals:

1.
R √2 − 4




2.
R √2 − 9




3.
R √

1− 2

4.
R √

9− 162

5.
R √

4 + 2


6.
R 3√

2 − 1

7.
R √

42 + + 1


8.
R √

3 + 2− 2


Exercise 21.3 Evaluate the following integrals:

1.
R 1

(− 2) (2 + 1)

2.
R 1

(− 2)2 (2 + 1)

3.
R 1

(− 2)2 (2 + 1)2
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4.
R 4 + 23 + 3

(− 4)6 

5.
R 2

(− 2)

6.
R 1

(− 2) (2 + 2+ 2)

7.
R 1

(− 2) (2 + 3+ 2)

8.
R 3 + 1

3 − 1

9.
R 1

83 + 1


10.
R 

4 + 22 + 2


Exercise 21.4 Use L’Hospital’s method to find

a)
R

23
(+2)(−3)(−2)(+3)

b)
R

1
(+1)(−1)(+7)(−3)

Exercise 21.5 Match the integral on the left, and the evaluated integral on

the right:R
cos sin4  1

48R
cos2  sin4  1

16
− 1

64
sin 2− 1

64
sin 4+ 1

192
sin 6R 4

0
cos sin5  1

3R 3
4

cos3  sin3  −1
4R 2

0
cos2  sin 1

2
+ 1

4
sin 2R 0

−2 cos
3  sin 3

8
− 3

16
 − 1

4
sin 2+ 1

32
sin 4R

cos2  1
8
sin− 1

16
sin 3+ 1

80
sin 5R

sin4  11
384
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Exercise 21.6 IntegrateZ 1

−1

1

(+ 3)(+ 2)(− 2)(− 3)

The graph of the function is shown to the below. Lets call it the friendship

graph.

Exercise 21.7 “One,Two,Three,Four Five, once I caught a fish alive!”Z
(1 + 2+ 32 + 43 + 54)

(1 + + 2 + 3 + 4 + 5)
 =?

Exercise 21.8 FindZ
(1 + + 2 + 3 + 4)(sin() + )

Exercise 21.9 Find Z
log()

1

2


Exercise 21.10 Find the following definite integralZ 2

1

+ tan() + sin() + cos() + log()
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Exercise 21.11 Evaluate the following integral:Z 2

0

sin(sin(sin(sin(sin()))))

Explain the answer you get.

Exercise 21.12 An evil integral: EvaluateZ
1

 log()


HINT: Can you figure out a function () which has
1

 log()
as the derivative?
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22

Taylor polynomials (Exercises)

22.1 Practice Problems

Example 126 Find Taylor polynomial 4() for ln(1 + )

Solution: Let () = ln(1 + )

4() = (0) +  0(0)+
 00(0)
2!

2 +
 000(0)
3!

3 +
 (4)(0)

4!
4

(0) = 0

 0() =
1

+ 1
 0(0) = 1

 00() = − 1

(+1)2
 00(0) = −1

 000() = 2

(+1)3
 000(0) = 2

 (4)() = − 6

(+1)4
 (4)(0) = −6

Therefore

4() = (0) +  0(0)+
 00(0)
2!

2 +
 000(0)
3!

3 +
 (4)(0)

4!
4

= 0 + − 1

2!
2 +

2

3!
3 − 6

4!
4

= − 1
2
2 +

1

3
3 − 1

4
4

(see Figure 22.1).

Example 127 Find Taylor polynomial of the function () = arctan() for

 = 1 and  = 3 and give the Lagrange form of the remainder.
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Fig. 22.1. Taylor polynomials for ln(1 + )

(1) = 1
4


0() =
1

2 + 1
0(1) =

1

2

00() = − 2

(2 + 1)
2

00(1) = −1
2

000() = 8 2

(2+1)3
− 2

(2 + 1)
2

000(1) =
1

2

=

¡
62 − 2¢
(2 + 1)

3

Therefore,

3() = (0) +  0(0)+
 00(0)
2!

2 +
 000(0)
3!

3

=
1

4
 +

1

2
(− 1)−

1

2
2!
(− 1)2 +

1

2
3!
(− 1)3

=


4
+
1

2
(− 1)− 1

4
(− 1)2 + 1

12
(− 1)3 
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The Lagrange form of the remainder is

4() =
(4)()

4!
(− 1)4 

where  is between 1 and We need to find the fourth derivative of the given

function. From the work above, we have

000() =

¡
62 − 2¢
(2 + 1)

3


so,

(4)() = 24


(2 + 1)
3
− 48 3

(2 + 1)
4

= −24 2 − 1
(2 + 1)

4


Therefore,

4() =
(4)()

4!
(− 1)4

=

−24 1− 2

(2 + 1)
4

4!
(− 1)4

= 
1− 2

(2 + 1)
4
(− 1)4

where  is between 1 and  ¤
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Appendixes

A1. Greek letters used in mathematics, science, and
engineering

The Greek letter forms used in mathematics are often different from those used

in Greek-language text: they are designed to be used in isolation, not connected

to other letters, and some use variant forms which are not normally used in

current Greek typography. The table below shows Greek letters rendered in

TEX

Table 22.1. Greek letters used in mathematics

 alpha  nu

 beta  Ξ xi

 Γ gamma  Π pi

 ∆ delta  rho

 epsilon  Σ sigma

 zeta  tau

 eta  upsilon

 Θ theta  Φ phi

 iota  chi

 kappa  Ψ psi

 Λ lambda  Ω omega

 mu † dagger

TEXis a typesetting system designed and mostly written by Donald Knuth

at Stanford and released in 1978.

Together with the Metafont language for font description and the Computer

Modern family of typefaces, TeX was designed with two main goals in mind:

to allow anybody to produce high-quality books using a reasonably minimal

amount of effort, and to provide a system that would give exactly the same

results on all computers, now and in the future.
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